首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class II actins, such as Drosophila and mammalian skeletal muscle actins, have genes that code for a Met-X-Asp NH2 terminus where X is usually cysteine. These actins have an Ac-Asp NH2 terminus so two amino acids must be removed. To determine the nature of this processing, we labeled Drosophila Schneider L-2 cells with [35S]methionine or cysteine, isolated the actin, and analyzed the NH2-terminal actin tryptic peptides and their thermolysin digestion products. After a 4-h labeling period, we detected completed actin polypeptide chains with either an unblocked Asp or an Ac-Asp NH2 terminus. No intermediate with an NH2-terminal Cys or Met could be demonstrated. If, however, Drosophila mRNA was translated in a mRNA-dependent rabbit reticulocyte lysate system, an additional 43-kDa actin intermediate was observed. On the basis of thermolysin digestion studies and experiments using mild acid hydrolysis of a labeled actin NH2-terminal tryptic peptide fragment, we identified this intermediate as having an Ac-Cys-Asp NH2 terminus. In a time-dependent fashion, Ac-Cys was removed generating actin with an exposed NH2-terminal Asp which was subsequently acetylated to produce the mature form of actin. The removal of Met and the acetylation of Cys may occur early in translation while the nascent polypeptide chain is still attached to the ribosome. Subsequent processing occurs following completion of the synthesis of the actin polypeptide. The removal of Ac-Cys from Drosophila actin is thus similar to removal of Ac-Met from the NH2 terminus of class I actins although in the case of the class II actins, it is the second amino acid that is removed as an acetylated species.  相似文献   

2.
Alternate pathways for removal of the class II actin initiator methionine   总被引:1,自引:0,他引:1  
Class II actin genes usually specify a polypeptide with a Met-Cys-Asp NH2 terminus, whereas the actin itself begins with an acetyl (Ac)-Asp(Glu). Previous studies with Drosophila actin showed that the first detectable intermediate is one with an Ac-Cys NH2 terminus which is subsequently cleaved in a novel reaction to expose the Asp. The initiator Met was probably removed early in translation as a free amino acid. To determine whether the class II actin initiating Met could also be removed in an acetylation-dependent manner, we translated Drosophila mRNA in a rabbit reticulocyte lysate in which protein acetylation was inhibited. After 60 min, three actin intermediates were detected, NH2-Met-Cys-Asp-actin, Ac-Met-Cys-Asp-actin, and NH2-Cys-Asp-actin. During processing in the presence of acetyl-CoA, three additional species were observed with NH2-terminal Ac-Cys-Asp, NH2-Asp, and Ac-Asp segments. In a time- and acetyl-CoA-dependent fashion, Met-Cys-Asp-actin was processed to the mature actin, presumably through an Ac-Met-Cys-Asp intermediate. Thus, two different pathways for removal of the initiator Met of class II actins, acetylation-dependent and independent, are possible. Since no class II actin intermediate containing the initiator Met is seen in vivo, although in class I actins this intermediate is observed, the most probable pathway for class II actins in vivo is the cotranslational removal of the initiator Met as a free amino acid.  相似文献   

3.
We have examined the role of the acidic residues Asp2 and Glu4 at the NH2 terminus of Saccharomyces cerevisiae actin through site-directed mutagenesis. In DNEQ actin, these residues have been changed to Asn2 and Gln4, whereas in delta DSE actin, the Asp2-Ser-Glu tripeptide has been deleted. Both mutant actins can replace wild type yeast actin. Peptide mapping studies reveal that DNEQ, like wild type actin, retains the initiator Met and is NH2 terminally acetylated, whereas delta DSE has a free NH2 terminus and has lost the initiator Met. Interestingly, microscopic examination of filaments of these two actins reveal the appearance of bundled filaments. The DNEQ bundles are smaller and more ordered, whereas the delta DSE bundles are larger and more loosely organized. Additionally, both mutant actins activate the ATPase activity of rabbit muscle myosin S1 fragment to a lesser extent than wild type. We have also developed a sensitive assay for actin function in vivo that enabled us to detect a slight defect in the ability of these mutant actins to support secretion, an important function in yeast. Thus, although the mutant actins resulted in no gross phenotypic changes, we were able to detect a defect in actin function through this assay. From these studies we can conclude that 1) although NH2-terminal negative charges are not essential to yeast life, the loss of such charges does result in a slight defect in the actins' ability to support secretion, 2) removal of the NH2-terminal negative charges promotes the bundling of actin filaments, and 3) actins lacking NH2-terminal negative charges are unable to activate the myosin S1 ATPase activity as well as wild type actin.  相似文献   

4.
Both mammalian nonmuscle and muscle actins possess an AcAsp(Glu)NH2 terminus. The nonmuscle actin genes code for a polypeptide with a Met-Asp NH2 terminus (class I) whereas the muscle actin genes code for a polypeptide with a Met-Cys-Asp NH2 terminus (class II). Two amino acids must be removed for mature muscle actin synthesis, whereas only the Met must be removed for nonmuscle actin synthesis. We wished to know whether a nonmuscle cell which normally does not synthesize a class I actin can correctly process a muscle actin with its extra NH2-terminal amino acid in vivo. To answer this question we have used L/LK165 cells, a mouse L-cell transfected with a human cardiac muscle actin gene. When these cells were labeled overnight with [35S]Cys, an actin with an NH2-terminal tryptic peptide corresponding to that of mature cardiac muscle actin was detected. When the cells were pulse-labeled for 20 min, a new actin intermediate containing an AcCys-Asp amino terminus was observed which then disappeared with time. Furthermore, the muscle actin was processed as fast if not faster than the nonmuscle actin in these cells. This actin intermediate was also seen in chick myotube cultures. Our results show that the ability to correctly process muscle specific actins is not tissue specific. Furthermore, these results confirm a processing pathway for class II actins proposed by us earlier on the basis of experiments with a cell-free translation system.  相似文献   

5.
Many eukaryotic proteins are co and post-translationally modified at their N termini by removal of one or two amino acid residues and N(alpha)-acetylation. Actins show two different forms of N-terminal processing dependent on their N-terminal sequence. In class II actins, which include muscle actins, the common primary sequence of Met-Cys-Asp-actin is processed to acetyl-Asp-actin. The functional significance of this in vivo is unknown. We have studied the indirect flight muscle-specific actin, ACT88F, of Drosophila melanogaster. Our results show that ACT88F is N-terminally processed in vivo as a class II actin by removal of the first two amino acid residues (Met and Cys), but that uniquely the N terminus is not acetylated. In addition we show that ACT88F is methylated, probably at His73.Flies carrying the mod(-) mutation fail to complete post-translational processing of ACT88F. We propose that the mod gene product is normally responsible for removing N-acetyl-cysteine from actin. The biological significance of this process is demonstrated by observations that retention of the N-acetyl-cysteine in ACT88F affects the flight muscle function of mod(-) flies. This suggests that the extreme N terminus affects actomyosin interactions in vivo, a proposal we have examined by in vitro motility assays of ACT88F F-actin from mod(-) flies. The mod(-) actin only moves in the presence of methylcellulose, a viscosity-enhancing agent, where it moves at velocities slightly, but significantly, reduced compared to wild-type. These data confirm that N-acetyl-cysteine at the N terminus affects actomyosin interactions, probably by reducing formation of the initial actomyosin collision complex, a process known to involve the actin N terminus.  相似文献   

6.
Most actins examined to date undergo a unique posttranslational modification termed processing, catalyzed by the actin N-acetylaminopeptidase. Processing is the removal of acetylmethionine from the amino terminus in class I actins with Met-Asp(Glu) amino termini. For class II actins with Met-X-Asp(Glu) amino termini, processing is the removal of the second residue as an N-acetylamino acid. Other cytosolic proteins with these amino termini are not processed suggesting that the reaction may be specific for actins. In actin, X is usually cysteine. However, there are some class II actins in which this residue is other than cysteine, suggesting a broader substrate specificity for actin N-acetylaminopeptidase than acetylmethionine or acetylcysteine. We constructed mutant actins in which this cysteine was replaced with serine, asparagine, glycine, aspartic acid, histidine, phenylalanine, and tyrosine and used these to determine the substrate specificity of rat liver actin N-acetylaminopeptidase in vitro. Amino-terminal acetylmethinonine was cleaved from adjacent aspartic acid, asparagine, or histidine, but not serine, glycine, phenylalanine, or tyrosine. Of the acetylated actin amino termini tested, only acetylmethionine and acetylcysteine were cleaved. Histidine was never N-acetylated and was not cleaved. When phenylalanine and tyrosine were adjacent to the initiator methionine, no initiator methionine was cleaved even though it was acetylated. These results suggest a narrow substrate specificity for the rat liver actin N-acetylaminopeptidase. They also demonstrate that the adjacent residue can effect actin N-acetylaminopeptidase specificity.  相似文献   

7.
8.
NH2-terminal processing of actin in mouse L-cells in vivo   总被引:1,自引:0,他引:1  
When Dictyostellium discoideum actin is synthesized in vitro, it is made as a 43,000-dalton polypeptide with an NH2-terminal N-acetylmethionine. The acetylmethionine is then cleaved post-translationally, and the new NH2-terminal aspartic acid is acetylated to give the mature form of actin. Inhibition of methionine acetylation prevents methionine cleavage (Redman, K., and Rubenstein, P. (1981) J. Biol. Chem. 256, 13226-13229). In this paper, we describe the results of experiments designed to discover whether this novel actin processing pathway is peculiar to the rabbit reticulocyte lysate system or whether it is utilized by mammalian cells in vivo as well. We show that in mouse L-929 cells, actin is made as a 43,000-dalton protein with an NH2-terminal N-acylmethionine residue. Experiments using thin layer chromatography and digestion of the acylmethionine residue with hog kidney acylase I demonstrate that the acyl group is an acetyl residue. Pulse-chase experiments show that over the course of 1 h, this precursor is transformed first to an actin with a free NH2-terminal aspartic acid and is subsequently converted to mature L-cell actin with an acetylaspartic acid NH2 terminus. The half-life of the initial actin precursor in the cell appears to be approximately 12-15 min. These studies demonstrate the existence of this novel actin processing pathway in vivo and suggest that it is used for those actins where, in the gene, the initiator methionine codon directly precedes the codon for aspartic or glutamic acids, the residues normally found at the actin NH2 terminus.  相似文献   

9.
We have studied the importance of N-terminal processing for normal actin function using the Drosophila Act88F actin gene transcribed and translated in vitro. Despite having different charges as determined by two-dimensional (2D) gel electrophoresis, Act88F expressed in vivo and in vitro in rabbit reticulocyte lysate bind to DNase I with equal affinity and are able to copolymerise with bulk rabbit actin equally well. Using peptide mapping and thin-layer electrophoresis we have shown that bestatin [( 3-amino-2-hydroxy-4-phenyl-butanoyl]-L-leucine), an inhibitor of aminopeptidases, can inhibit actin N-terminal processing in rabbit reticulocyte lysate. Although processed and unprocessed actins translated in vitro are able to bind to DNase I equally well, unprocessed actins are less able to copolymerise with bulk actins. This effect is more pronounced when bulk rabbit actin is used but is still seen with bulk Lethocerus actin. Also, the unprocessed actins reduce the polymerisation of the processed actin translated in vitro with the bulk rabbit actin. This suggests that individual actins do interact, even in non-polymerising conditions. The reduced ability of unprocessed actin to polymerise shows that correct post-translational modification of the N terminus is required for normal actin function.  相似文献   

10.
Muscle and yeast actins display distinct behavioral characteristics. To better understand the allosteric interactions that regulate actin function, we created a muscle/yeast hybrid actin containing a muscle-specific outer domain (subdomains 1 and 2) and a yeast inner domain (subdomains 3 and 4). Actin with muscle subdomain 1 and the two yeast N-terminal negative charges supported viability. The four negative charge muscle N terminus in a muscle subdomain 1 background caused death, but in the same background actin with three N-terminal acidic residues (3Ac/Sub1) led to sick but viable cells. Addition of three muscle subdomain 2 residues (3Ac/Sub12) produced no further deleterious effects. These hybrid actins caused depolarized cytoskeletons, abnormal vacuoles, and mitochondrial and endocytosis defects. 3Ac/Sub1 G-actin exchanged bound epsilonATP more slowly than wild type actin, and the exchange rate for 3Ac/Sub12 was even slower, similar to that for muscle actin. The mutant actins polymerized faster and produced less stable and shorter filaments than yeast actin, the opposite of that expected for muscle actin. Unlike wild type actin, in the absence of unbound ATP, polymerization led to ADP-F-actin, which rapidly depolymerized. Like yeast actin, the hybrid actins activated muscle myosin S1 ATPase activity only about one-eighth as well as muscle actin, despite having essentially a muscle actin-specific myosin-binding site. Finally, the hybrid actins behaved abnormally in a yeast Arp2/3-dependent polymerization assay. Our results demonstrate a unique sensitivity of yeast to actin N-terminal negative charge density. They also provide insight into the role of each domain in the control of the various functions of actin.  相似文献   

11.
Analysis of two recombinant variants of chicken striated muscle alpha-tropomyosin has shown that the structure of the amino terminus is crucial for most aspects of tropomyosin function: affinity to actin, promotion of binding to actin by troponin, and regulation of the actomyosin MgATPase. Initial characterization of variants expressed and isolated from Escherichia coli has been published (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Fusion tropomyosin contains 80 amino acids of a nonstructural influenza virus protein (NS1) on the amino terminus. Nonfusion tropomyosin is a variant because the amino-terminal methionine is not acetylated (unacetylated tropomyosin). The affinity of tropomyosin labeled at Cys190 with N-[14C]ethylmaleimide for actin was measured by cosedimentation in a Beckman Airfuge. Fusion tropomyosin binds to actin with an affinity slightly greater than that of chicken striated muscle alpha-tropomyosin (Kapp = 1-2 X 10(7) versus 0.5-1 X 10(7) M-1) and more strongly than unacetylated tropomyosin (Kapp = 3 X 10(5) M-1). Both variants bind cooperatively to actin. Troponin increases the affinity of unacetylated tropomyosin for actin (+Ca2+, Kapp = 6 X 10(6) M-1; +EGTA, Kapp = 2 X 10(7) M-1), but the affinity is still lower than that of muscle tropomyosin for actin in the presence of troponin (Kapp much greater than 10(8) M-1). Troponin has no effect on the affinity of fusion tropomyosin for actin indicating that binding of troponin T to the over-lap region of the adjacent tropomyosin, presumably sterically prevented by the fusion peptide in fusion tropomyosin, is required for troponin to promote the binding of tropomyosin to actin. The role of troponin T in regulation and the mechanisms of cooperative binding of tropomyosin to actin have been discussed in relation to this work.  相似文献   

12.
Human interleukin-1 beta (IL-1 beta) is expressed in activated monocytes as a 31-kDa precursor protein which is processed and secreted as a mature, unglycosylated 17-kDa carboxyl-terminal fragment, despite the fact that it contains a potential N-linked glycosylation site near the NH2 terminus (-Asn7-Cys8-Thr9-). cDNA coding for authentic mature IL-1 beta was fused to the signal sequence from the Candida albicans glucoamylase gene, two amino acids downstream from the signal processing site. Upon expression in Saccharomyces cerevisiae, approximately equimolar amounts of N-glycosylated (22 kDa) and unglycosylated (17 kDa) IL-1 beta protein were secreted. The N-glycosylated yeast recombinant IL-1 beta exhibited a 5-7-fold lower specific activity compared to the unglycosylated species. The mechanism responsible for inefficient glycosylation was also studied. We found no differences in secretion kinetics or processing between the two extracellular forms of IL-1 beta. The 17-kDa protein, which was found to lack core sugars, does not result from deglycosylation of the 22-kDa protein in vivo and does not result from saturation of the glycosylation enzymatic machinery through overexpression. Alteration of the uncommon Cys8 residue in the -Asn-X-Ser/Thr-glycosylation site to Ser also had no effect. However, increasing the distance between Asn7 and the signal processing site increased the extent of core N-linked glycosylation, suggesting a reduction in glycosylation efficiency near the NH2 terminus.  相似文献   

13.
N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be the most potent inhibitors. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate and N-bromosuccinimide.  相似文献   

14.
Amino acid sequence of Acanthamoeba actin   总被引:2,自引:0,他引:2  
By amino acid sequence studies, only one form of cytoplasmic actin was detected in Acanthamoeba castellanii. Its amino acid sequence is very similar to the sequences of Dictyostelium and Physarum actins, from which Acanthamoeba actin differs in only nine and seven residues, respectively, including the deletion of the first residue. Acanthamoeba actin is unique in containing a blocked NH2-terminal neutral amino acid (glycine), while all other actins sequenced thus far have a blocked acidic amino acid (aspartic or glutamic) at the NH2 terminus. Acanthamoeba actin is also unique in that it contains an N epsilon-trimethyllysine residue at position 326. Like other actins, Acanthamoeba actin contains an NT-methylhistidine residue at position 73. The protein sequence is in complete agreement with the sequence derived from the nucleotide sequence of an expressed actin gene.  相似文献   

15.
To determine the reason for the inviability of Saccharomyces cerevisiae with skeletal muscle actin, we introduced into yeast actin the first variant muscle residue from the C-terminal end, H372R. Arg is also found at this position in non-yeast nonmuscle actins. The substitution caused retarded growth on glucose and an inability to use glycerol as a sole carbon source. The mitochondria were clumped and had lost their DNA, the vacuole appeared hypervesiculated, and the actin cytoskeleton became somewhat depolarized. Introduction of the second muscle actin-specific substitution, S365A, rescued these defects. Suppression was also achieved by introducing the four acidic N-terminal residues of muscle actin in place of the two found in yeast actin. The H372R substitution results in an increase in polymerization-dependent fluorescence of Cys-374 pyrene-labeled actin. H372R actin polymerizes slightly faster than wild-type (WT) actin. Yeast actin-related proteins 2 and 3 (Arp2/3) accelerates the polymerization of H372R actin to a much greater extent than WT actin. The two suppressors did not affect the rate of H372R actin polymerization in the absence of an Arp2/3 complex. In contrast, the S365A substitution dampened the rate of Arp2/3 complex-stimulated H372R actin polymerization, and the addition of the four acidic N-terminal residues caused this rate to decrease below that observed with WT actin in the presence of Arp2/3. Structural analysis of the mutations suggests the presence of stringent steric and ionic requirements for the bottom of actin subdomain 1 and also suggests that there is allosteric communication through subdomain 1 within the actin monomer between the N and C termini.  相似文献   

16.
The primary structure of all actins except that isolated from Naegleria gruberi contains a unique N tau-methylhistidine (MeHis) at position 73. This modified residue has been implicated as possibly being important for the post-translational processing of actin's amino terminus, the binding of actin to DNase I, and in the polymerization of G-actin. We have investigated the potential role of MeHis in each of these processes by utilizing site-directed mutagenesis to change His-73 of skeletal muscle actin to Arg and Tyr. Wild type and mutant actins were synthesized in vivo, using non-muscle cells transfected with mutant cDNAs, and in vitro by translating mutant RNAs synthesized using SP6 RNA polymerase in a rabbit reticulocyte lysate. We have found that actins containing Arg or Tyr at position 73 undergo amino-terminal processing, bind to DNase I-agarose, and become incorporated into the cytoskeleton of a nonmuscle cell as efficiently as wild type actin. Furthermore, using an in vitro copolymerization assay we have found that although there is no difference between the Arg mutant and the wild type actins, the Tyr mutant has a slightly greater critical concentration for polymerization. These results show that MeHis is not absolutely required for any of these processes.  相似文献   

17.
We present here a new method for inhibiting protein acetylation in a rabbit reticulocyte cell-free protein-synthesizing system. This procedure utilizes S-acetonyl coenzyme A, a nonreactive acetyl-CoA analogue, as an inhibitor of the NH2-terminal protein acetyltransferase in this lysate. With this procedure, we can make, in vitro, Dictyostelium discoideum actin which is 85% nonacetylated but fully translated. With the fully translated but nonacetylated actin as a substrate, the actin can be almost completely acetylated post-translationally in an acetyl-CoA-dependent system after the actin has left the ribosome. Using formylated and nonformylated [35S]Met-tRNAfMet as a source of label and in conjunction with detailed peptide mapping experiments with trypsin and thermolysin, the in vitro acetylation is shown to occur at the NH2 terminus of the newly synthesized actin. Furthermore, the initiator methionine residue, contrary to expectation, is not cleaved off but remains stable for at lest 50 min. thus, in the acetylating reticulocyte lysate system, the primary complete translation product in actin synthesis is Ac-Met-Asp and not Ac-Asp.  相似文献   

18.
Novel chicken actin gene: third cytoplasmic isoform.   总被引:26,自引:7,他引:19       下载免费PDF全文
  相似文献   

19.
In a permanent cell line derived from Drosophila embryos, cytoplasmic actin is produced as an unstable precursor, which is subsequently converted to a stable form. This conversion results in a reduction in isoelectric point, with no apparent change in molecular weight. The conversion involves an enzymatic acetylation, and results in an insensitivity to aminopeptidase digestion, suggesting N-terminal blockage. Both the acetylated and unacetylated actins can participate in the assembly of F-actin, but with different efficiencies.This work was supported by a grant from the NIH (GM 22866).  相似文献   

20.
Actin from Saccharomyces cerevisiae.   总被引:17,自引:1,他引:16       下载免费PDF全文
Inhibition of DNase I activity has been used as an assay to purify actin from Saccharomyces cerevisiae (yeast actin). The final fraction, obtained after a 300-fold purification, is approximately 97% pure as judged by sodium dodecyl sulfate-gel electrophoresis. Like rabbit skeletal muscle actin, yeast actin has a molecular weight of about 43,000, forms 7-nm-diameter filaments when polymerization is induced by KCl or Mg2+, and can be decorated with a proteolytic fragment of muscle myosin (heavy meromyosin). Although heavy meromyosin ATPase activity is stimulated by rabbit muscle and yeast actins to approximately the same Vmax (2 mmol of Pi per min per mumol of heavy meromyosin), half-maximal activation (Kapp) is obtained with 14 micro M muscle actin, but requires approximately 135 micro M yeast actin. This difference suggests a low affinity of yeast actin for muscle myosin. Yeast and muscle filamentous actin respond similarly to cytochalasin and phalloidin, although the drugs have no effect on S. cerevisiae cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号