首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the VACM-1/cul5 gene in endothelial and in cancer cell lines in vitro inhibits cellular proliferation and decreases phosphorylation of MAPK. Structure-function analysis of the VACM-1 protein sequence identified consensus sites specific for phosphorylation by protein kinases A and C (PKA and PKC) and a Nedd8 protein modification site. Mutations at the PKA-specific site in VACM-1/Cul5 (S730AVACM-1) sequence resulted in increased cellular growth and the appearance of a Nedd8-modified VACM-1/Cul5. The aim of this study was to examine if PKA-dependent phosphorylation of VACM-1/Cul5 controls its neddylation status, phosphorylation by PKC, and ultimately growth. Our results indicate that in vitro transfection of rat adrenal medullary endothelial cells with anti-VACM-1-specific small interfering RNA oligonucleotides decreases endogenous VACM-1 protein concentration and increases cell growth. Western blot analysis of cell lysates immunoprecipitated with an antibody directed against a PKA-specific phosphorylation site and probed with anti-VACM-1-specific antibody showed that PKA-dependent phosphorylation of VACM-1 protein was decreased in cells transfected with S730AVACM-1 cDNA when compared with the cytomegalovirus-transfected cells. This change was associated with increased modification of VACM-1 protein by Nedd8. Induction of PKA activity with forskolin reduced modification of VACM-1 protein by Nedd8. Finally, rat adrenal medullary endothelial cells transfected with S730AVACM-1/cul5 cDNA and treated with phorbol 12-myristate 13-acetate (10 and 100 nm) to induce PKC activity grew significantly faster than the control cells. These results suggest that the antiproliferative effect of VACM-1/Cul5 is dependent on its posttranslational modifications and will help in the design of new anticancer therapeutics that target the Nedd8 pathway.  相似文献   

2.
VACM-1, a cullin gene family member, regulates cellular signaling   总被引:2,自引:0,他引:2  
Vasopressin-activated Ca2+-mobilizing (VACM-1)receptor binds arginine vasopressin (AVP) but does not haveamino acid sequence homology with the traditional AVP receptors.VACM-1, however, is homologous with a newly discovered cullin family ofproteins that has been implicated in the regulation of cell cyclethrough the ubiquitin-mediated degradation of cyclin-dependent kinase inhibitors. Because cell cycle processes can be regulated by the transmembrane signal transduction systems, the effects of VACM-1 expression on the Ca2+ and cAMP-dependent signaling pathwaywere examined in a stable cell line expressing VACM-1 in VACM-1transfected COS-1 cells and in cells cotransfected with VACM-1and the adenylyl cyclase-linked V2 AVP receptor cDNAs.Expression of the VACM-1 gene reduced basal as well as forskolin- andAVP-stimulated cAMP production. In cells cotransfected with VACM-1 andthe V2 receptor, the AVP- and forskolin-induced increasesin adenylyl cyclase activity and cAMP production were inhibited. Theinhibitory effect of VACM-1 on cAMP production could be reversed bypretreating cells with staurosporin, a protein kinase A (PKA)inhibitor, or by mutating S730A, the PKA-dependent phosphorylation sitein the VACM-1 sequence. The protein kinase C specific inhibitorGö-6983 further enhanced the inhibitory effect of VACM-1 onAVP-stimulated cAMP production. Finally, AVP stimulatedD-myo-inositol 1,4,5-trisphosphate productionboth in the transiently transfected COS-1 cells and in the stable cell line expressing VACM-1, but not in the control COS-1 and Chinese hamster ovary cells. Our data demonstrate that VACM-1, thefirst mammalian cullin protein to be characterized, is involved in the regulation of signaling.

  相似文献   

3.
Vasopressin-activated calcium-mobilizing (VACM-1), a cul-5 gene, is localized on chromosome 11q22-23 close to the gene for Ataxia Telangiectasia in a region associated with a loss of heterozygosity in breast cancer tumor samples. To examine the biological role of VACM-1, we studied the effect of VACM-1 expression on cellular growth and gene expression in T47D breast cancer cells. Immunocytochemistry studies demonstrated that VACM-1 was expressed in 0.6-6% of the T47D cells and localized to the nucleus of mitotic cells. Overexpressing VACM-1 significantly attenuated cellular proliferation and MAPK phosphorylation when compared to the control cells. In addition, VACM-1 decreased egr-1 and increased Fas-L mRNA levels. Further, egr-1 protein levels were significantly lower in the nuclear fraction from VACM-1 transfected cells when compared to controls. These data indicate that VACM-1 is involved in the regulation of cellular growth.  相似文献   

4.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate(S1P) are potent lipid growth factors with similar abilities tostimulate cytoskeleton-based cellular functions. Their effects aremediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes (edgs). Wehypothesize that large quantities of LPA and S1P generated by activatedplatelets may influence endothelial cell functions. Using an in vitrowound healing assay, we observed that LPA and S1P stimulated closure ofwounded monolayers of human umbilical vein endothelial cells and adultbovine aortic endothelial cells, which express LPA receptor Edg2, andS1P receptors Edg1 and Edg3. The two major components of wound healing,cell migration and proliferation, were stimulated individually by bothlipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK)phosphorylation. Pertussis toxin partially blocked the effects of bothlipids on endothelial cell migration, MAPK phosphorylation, andCa2+ mobilization, implicatingGi/o-coupled Edg receptor signaling inendothelial cells. LPA and S1P did not cross-desensitize each other inCa2+ responses, suggesting involvement of distinctreceptors. Thus LPA and S1P affect endothelial cell functions throughsignaling pathways activated by distinct GPCRs and may contribute tothe healing of wounded vasculatures.

  相似文献   

5.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Vasopressin-activated calcium-mobilizing (VACM-1) protein is a cul-5 gene product that forms complexes with a subclass of ubiquitin E3 ligases involved in proteasomal protein degradation. The expression of VACM-1 cDNA in the T47D breast cancer cell line inhibits growth and decreases phosphorylation of mitogen activated protein kinase. Factors that regulate expression or stability of VACM-1 protein have not been identified, however. In our search to identify drugs/substances that may control VACM-1 protein expression, we examined the effects of resveratrol (trans-3,5,4′-trihydroxystilbene), a natural component in the human diet which inhibits tumor initiation and promotion. CMV vector and VACM-1 cDNA stably transfected T47D breast cancer-derived cells were treated with resveratrol and cell growth and VACM-1 protein concentrations were measured. Since the cellular mechanism of resveratrol-dependent inhibition of cell growth also involves the regulation of estrogen receptors, the effect of 17-β−estradiol and resveratrol on ERα levels and on cell growth was examined in control and in VACM-1 cDNA transfected cells. Our results demonstrate that antiproliferative effect of resveratrol observed in the control T47D cancer cells was significantly enhanced in VACM-1 cDNA transfected T47D cells. Western blot results indicated that resveratrol increased VACM-1 protein concentration. Finally, treatment with resveratrol for 24 and 48 h attenuated 17-β−estradiol induced increase in cell growth both in control and in VACM-1 cDNA transfected cells. The effect was significantly higher in the VACM-1 cDNA transfected cells when compared to controls. These results indicate that the antiproliferative effect of resveratrol may involve induction of VACM-1/cul5.  相似文献   

7.
Vasopressin-activated calcium mobilizing receptor (VACM-1)/cullin 5 (cul 5) inhibits growth when expressed in T47D breast cancer cells by a mechanism that involves a decrease in MAPK phosphorylation and a decrease in the early growth response element (egr-1) concentration in the nucleus. Since both MAPK and egr-1 pathways can be regulated by 17β-estradiol, we next examined the effects of VACM-1 cDNA expression on estrogen-dependent growth in T47D cells and on estrogen receptor (ER) concentrations. Our results demonstrate that in T47D cells, both basal and 17β-estradiol-dependent increase in cell growth and MAPK phosphorylation were inhibited in cells transfected with VACM-1 cDNA. Further, Western blot and immunocytochemistry data analyses indicate that ER concentrations and its nuclear localization are significantly lower in cells transfected with VACM-1 cDNA when compared to controls. These data indicate that in the T47D cancer cell line VACM-1 inhibits growth by attenuating estrogen-dependent signaling responses. These findings may have implications in the development of cancer treatments.  相似文献   

8.
Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [3H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKα1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27kip suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21cip and p27kip expression via AMPK activation, and small interfering RNA (siRNA) of p21cip and p27kip restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.  相似文献   

9.
The polyamines spermidine and spermine and their precursorputrescine are intimately involved in and are required for cell growthand proliferation. This study examines the mechanism by whichpolyamines modulate cell growth, cell cycle progression, and signaltransduction cascades. IEC-6 cells were grown in the presence orabsence ofDL--difluoromethylornithine(DFMO), a specific inhibitor of ornithine decarboxylase, which is thefirst rate-limiting enzyme for polyamine synthesis. Depletion ofpolyamines inhibited growth and arrested cells in theG1 phase of the cell cycle. Cellcycle arrest was accompanied by an increase in the level of p53 proteinand other cell cycle inhibitors, including p21Waf1/Cip1 andp27Kip1. Induction of cell cycleinhibitors and p53 did not induce apoptosis in IEC-6 cells, unlike manyother cell lines. Although polyamine depletion decreased the expressionof extracellular signal-regulated kinase (ERK)-2 protein, a sustainedincrease in ERK-2 isoform activity was observed. The ERK-1 proteinlevel did not change, but ERK-1 activity was increased inpolyamine-depleted cells. In addition, polyamine depletion induced thestress-activated proteinkinase/c-JunNH2-terminal kinase (JNK) type ofmitogen-activated protein kinase (MAPK). Activation of JNK-1 was theearliest event; within 5 h after DFMO treatment, JNK activity wasincreased by 150%. The above results indicate that polyamine depletioncauses cell cycle arrest and upregulates cell cycle inhibitors andsuggest that MAPK and JNK may be involved in the regulation of theactivity of these molecules.  相似文献   

10.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

11.
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1Ser-259 by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.  相似文献   

12.
13.
Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy.  相似文献   

14.
Exposure of renal proximal tubule cells to oxalate may play an important role in cell proliferation, but the signaling pathways involved in this effect have not been elucidated. Thus the present study was performed to examine the effect of oxalate on 3H-labeled thymidine incorporation and its related signal pathway in primary cultured rabbit renal proximal tubule cells (PTCs). The effects of oxalate on [3H]thymidine incorporation, lactate dehydrogenase (LDH) release, Trypan blue exclusion, H2O2 release, activation of mitogen-activated protein kinases (MAPKs), and 3H-labeled arachidonic acid (AA) release were examined in primary cultured renal PTCs. Oxalate inhibited [3H]thymidine incorporation in a time- and dose-dependent manner. However, its analogs did not affect [3H]thymidine incorporation. Oxalate (1 mM) significantly increased H2O2 release, which was blocked by N-acetyl-L-cysteine (NAC) and catalase (antioxidants). Oxalate significantly increased p38 MAPK and stress-activated protein kinase (SAPK)/c-Jun NH2-terminal kinase (JNK) activity, not p44/42 MAPK. Oxalate stimulated [3H]AA release and translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic fraction to the membrane fraction. Indeed, oxalate significantly increased prostaglandin E2 (PGE2) production compared with control. Oxalate-induced inhibition of [3H]thymidine incorporation and increase of [3H]AA release were prevented by antioxidants (NAC), a p38 MAPK inhibitor (SB-203580), a SAPK/JNK inhibitor (SP-600125), or PLA2 inhibitors [mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3)], but not by a p44/42 MAPK inhibitor (PD-98059). These findings suggest that oxalate inhibits renal PTC proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways. kidney; mitogen-activated protein kinase; phospholipase A2  相似文献   

15.
High throughput DNA microarray has made it possible to outline genes whose expression in malignant plasma cells is associated with short overall survival of patients with Multiple Myeloma (MM). A further step is to elucidate the mechanisms encoded by these genes yielding to drug resistance and/or patients’ short survival. We focus here on the biological role of the DEP (for Disheveled, EGL-10, Pleckstrin) domain contained protein 1A (DEPDC1A), a poorly known protein encoded by DEPDC1A gene, whose high expression in malignant plasma cells is associated with short survival of patients. Using conditional lentiviral vector delivery of DEPDC1A shRNA, we report that DEPDC1A knockdown delayed the growth of human myeloma cell lines (HMCLs), with a block in G2 phase of the cell cycle, p53 phosphorylation and stabilization, and p21Cip1 accumulation. DEPDC1A knockdown also resulted in increased expression of mature plasma cell markers, including CXCR4, IL6-R and CD38. Thus DEPDC1A could contribute to the plasmablast features of MMCs found in some patients with adverse prognosis, blocking the differentiation of malignant plasma cells and promoting cell cycle.  相似文献   

16.
Acupuncture has many advantages in the treatment of certain diseases as opposed to drug therapy. Besides, adenosine has been revealed to affect cellular progression including proliferation. Therefore, this study aimed at exploring the mechanism involving acupuncture stress and adenosine in fibroblast proliferation. The fibroblasts from fascia tissues of the acupoint area (Zusanli) were stimulated by different levels of stress, different concentrations of adenosine, and agonist or antagonist of A3 receptor (A3R) to investigate the effect of stress stimulation, adenosine, and adenosine-A3R inhibition on fibroblasts. Then, the fibroblasts were treated with stress stimulation of 200 kPa or/and mitogen-activated protein kinase (MAPK) blocker. We revealed that stress stimulation and the binding of adenosine and A3R promoted fibroblast proliferation in the fascial tissue, increased the expression of immune-related factors, adenosine and A3R, and activated the MAPK signaling pathway. MAPK signaling pathway also directly affected the expression of adenosine, A3R, and immune-related factors. Stress stimulation and adenosine treatment upregulated A3R expression, and then activated the MAPK signaling pathway, which could in turn upregulate expression of adenosine, A3R and immune-related factors, and promote cell proliferation. Adenosine is shown to form a positive feedback loop with the MAPK signaling pathway. Collectively, stress stimulation in vitro induces the increase of adenosine in fibroblasts through the energy metabolism and activation of the MAPK signaling pathway through A3R, ultimately promoting fibroblast proliferation.  相似文献   

17.
Wang Z  Che PL  Du J  Ha B  Yarema KJ 《PloS one》2010,5(11):e13883

Background

This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson''s disease (PD).

Methodology and Principal Findings

SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth.

Conclusions and Significance

When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.  相似文献   

18.
The Dictyostelium genome encodes only two MAPKs, Erk1 and Erk2, and both are expressed during growth and development. Reduced levels of Erk2 expression have been shown previously to restrict cAMP production during development but still allow for chemotactic movement. In this study the erk2 gene was disrupted to eliminate Erk2 function. The absence of Erk2 resulted in a complete loss of folate and cAMP chemotaxis suggesting that this MAPK plays an integral role in the signaling mechanisms involved with this cellular response. However, folate stimulation of early chemotactic responses, such as Ras and PI3K activation and rapid actin filament formation, were not affected by the loss of Erk2 function. The erk2 cells had a severe defect in growth on bacterial lawns but assays of bacterial cell engulfment displayed only subtle changes in the rate of bacterial engulfment. Only cells with no MAPK function, erk1erk2 double mutants, displayed a severe proliferation defect in axenic medium. Loss of Erk2 impaired the phosphorylation of Erk1 in secondary responses to folate stimulation indicating that Erk2 has a role in the regulation of Erk1 activation during chemotaxis. Loss of the only known Dictyostelium MAPK kinase, MekA, prevented the phosphorylation of Erk1 but not Erk2 in response to folate and cAMP confirming that Erk2 is not regulated by a conventional MAP2K. This lack of MAP2K phosphorylation of Erk2 and the sequence similarity of Erk2 to mammalian MAPK15 (Erk8) suggest that the Dictyostelium Erk2 belongs to a group of atypical MAPKs. MAPK activation has been observed in chemotactic responses in a wide range of organisms but this study demonstrates an essential role for MAPK function in chemotactic movement. This study also confirms that MAPKs provide critical contributions to cell proliferation.  相似文献   

19.
During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occur s , which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin‐3‐gallate (EGCG) on the TxA2 mimetic, U46619‐induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p38MAPK, NF‐κB and MMP‐2 significantly inhibit U46619‐induced cell proliferation. EGCG markedly abrogate U46619‐induced p38MAPK phosphorylation, NF‐κB activation, proMMP‐2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619‐induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP‐2 markedly abrogate U46619‐induced SMase activity and S1P level. EGCG markedly inhibit U46619‐induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline–Ceramide–Sphingosine‐1‐phosphate (Spm–Cer–S1P) signalling axis plays an important role in MMP‐2 mediated U46619‐induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP‐2 activation by modulating p38MAPK–NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号