首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Vioque 《Nucleic acids research》1992,20(23):6331-6337
The genes encoding the RNA subunit of ribonuclease P from the unicellular cyanobacterium Synechocystis sp. PCC 6803, and from the heterocyst-forming strains Anabaena sp. PCC 7120 and Calothrix sp. PCC 7601 were cloned using the homologous gene from Anacystis nidulans (Synechococcus sp. PCC 6301) as a probe. The genes and the flanking regions were sequenced. The genes from Anabaena and Calothrix are flanked at their 3'-ends by short tandemly repeated repetitive (STRR) sequences. In addition, two other sets of STRR sequences were detected within the transcribed regions of the Anabaena and Calothrix genes, increasing the length of a variable secondary structure element present in many RNA subunits of ribonuclease P from eubacteria. The ends of the mature RNAs were determined by primer extension and RNase protection. The predicted secondary structure of the three RNAs studied is similar to that of Anacystis and although some idiosyncrasies are observed, fits well with the eubacterial consensus.  相似文献   

2.
3.
Phycobilisomes of the cyanobacterium Synechococcus 6301 contain C-phycocyanin and allophycocyanin in a molar ratio of approximately 3.8:1, a minor biliprotein, allophycocyanin B, and nonpigmented polypeptides of 75, 33, 30, and 27 kilodaltons. A nitrosoguanidine-induced mutant AN112 produces altered phycobilisomes with the molar ratio of C-phycocyanin to allophycocyanin reduced to approximately 1.4:1 and without any of the 33- and 30-kilodalton polypeptides. The mutant and wild type phycobilisomes contain the same molar amount of the 75- and 27-kilodalton polypeptides relative to allophycocyanin. As seen by electron microscopy, the allophycocyanin-containing core of the mutant and of the wild type phycobilisomes appears the same. In some views of the core, each of the two core units in the mutant particles can be seen to consist of four discs approximately 3 nm thick. In wild type phycobilisomes five or six rods, made up of two to six stacked discs (11.5 X 6 nm) are attached to the core. In the mutant, no such rods are seen; rather, single disc-shaped elements, ranging from two to six in number, are found attached. Spectroscopic measurements show that the assembly form of phycocyanin in the mutant phycobilisomes differs from that in the wild type particles but reveal no difference in the organization of the core elements. These results indicate that the portions of the rod substructures of wild type phycobilisomes, beyond the disc proximal to the core, are made up of phycocyanin and the 33- and 30-kilodalton polypeptides. Emission from phycocyanin is a significant component in the fluorescence from isolated Synechococcus 6301 phycobilisomes and indicates an upper limit of 94% for the efficiency of energy transfer from phycocyanin to allophycocyanin and allophycocyanin B in these particles.  相似文献   

4.
Phycobilisomes of the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC7120 differ from typical tricylindrical, hemidiscoidal phycobilisomes in three respects. Firstly, size comparisons of the core-membrane linker phycobiliproteins (LCM) in different cyanobacteria by SDS/PAGE reveal an apparent molecular mass of 120 kDa for the LCM of M. laminosus and Anabaena sp. PCC7120. This observation suggests that the polypeptides of these species have four linker-repeat domains. Secondly, phycobilisomes of M. laminosus are shown to contain at least three, but most probably four, different rod-core linker polypeptides (LRC). These LRC, which attach the peripheral rods to the core and thereby make phycocyanin/allophycocyanin contacts, have been identified and characterized by N-terminal amino acid sequence analysis. Additionally, electron microscopy of phycobilisomes isolated from M. laminosus and Anabaena sp. PCC7120 reveals similar structures which differ from those of Calothrix sp. PCC7601 with their typical six, peripheral rods. Based upon protein-analytical results and a reinterpretation of the data of [Isono, T. & Katoh, T. (1987) Arch. Biochem. Biophys. 256, 317-324], we discuss structural implications of recent findings on the established hemidiscoidal model for the phycobilisomes of M. laminosus and Anabaena sp. PCC7120. Up to eight peripheral rods are suggested to radiate from a modified core substructure which contains two additional peripheral allophycocyanin hexamer equivalents that serve as the core-proximal discs for two peripheral rods.  相似文献   

5.
6.
Gene map for the Cyanophora paradoxa cyanelle genome.   总被引:5,自引:3,他引:2       下载免费PDF全文
The genes for the following proteins were localized by hybridization analysis on the cyanelle genome of Cyanophora paradoxa: the alpha and beta subunits of phycocyanin (cpcA and cpcB); the alpha and beta subunits of allophycocyanin (apcA and apcB); the large and small subunits of ribulose-1,5-bisphosphate carboxylase (rbcL and rbcS); the two putative chlorophyll alpha-binding apoproteins of the photosystem I-P700 complex (psaA and psaB); four apoproteins believed to be components of the photosystem II core complex (psbA, psbB, psbC, and psbD); the two apoprotein subunits of cytochrome b-559 which is also found in the core complex of photosystem II (psbE and psbF); three subunits of the ATP synthase complex (atpA and atpBE); and the cytochrome f apoprotein (petA). Eighty-five percent of the genome was cloned as BamHI, BglII, or PstI fragments. These cloned fragments were used to construct a physical map of the cyanelle genome and to localize more precisely some of the genes listed above. The genes for phycocyanin and allophycocyanin were not clustered and were separated by about 25 kilobases. Although the rbcL gene was adjacent to the atpBE genes and the psbC and psbD genes were adjacent, the arrangement of other genes encoding various polypeptide subunits of protein complexes involved in photosynthetic functions was dissimilar to that observed for known chloroplast genomes. These results are consistent with the independent development of this cyanelle from a cyanobacterial endosymbiont.  相似文献   

7.
Anabaena sp. PCC 7120 mutants defective in phycobiliprotein biosynthesis or phycobilisome assembly were generated by transposon mutagenesis. Four mutants with grossly reduced content of the major phycobiliprotein, phycocyanin, were found to have insertions within the cpcBACDEFG1G2G3G4 operon coding for phycocyanin biosynthesis and assembly. The insertion in mutant B646 separated the promoter from the open reading frames and eliminated production of the phycocyanin (CpcA) and (CpcB) subunits. Insertion in cpcC in mutant B642 eliminated production of the L36 Rlinker polypeptide required for assembly of phycocyanin into the distal discs of the phycobilisome rod substructures. Mutants B64328 and B64407 had insertions, respectively, in cpcE and cpcF, genes coding for the subunits of the heterodimeric lyase which catalyzes the attachment of phycocyanobilin to the phycocyanin apo- subunit. Mutant SB12, often unable to survive under low light, was found to have an insertion in the apcE gene coding for the large core-membrane linker (L128 CM) that provides the scaffold for assembly of the phycobilisome core. DNA sequencing 3 of apcE revealed genes apcABC, coding for the and subunits of allophycocyanin and for the small core linker L7.8 C. Amino acid sequence comparisons showed that the ApcA and ApcB proteins are 37% identical and that each of these polypeptides is highly similar to corresponding polypeptides from the distantly related filamentous strains Calothrix sp. PCC7601 and Mastigocladus laminosus.  相似文献   

8.
Allophycocyanin was isolated from dissociated phycobilisomes from Nostoc sp. and was separated into allophycocyanin I, II, III, and B as described elsewhere. If the separation of the proteins following phycobilisome isolation is done in the presence of the protease inhibitor, phenylmethylsulfonylfluoride, associated with allophycocyanin I are two colored polypeptides of 95 kilodalton (kD) and 80 kD, belonging to the class of Group I polypeptides as defined by Tandeau de Marsac and Cohen-Bazire (Proc Natl Acad Sci USA 1977 74: 1635-1639). Allophycocyanin I has a fluorescence maximum of 680 nanometers as do intact phycobilisomes and has thus been suggested to be the final emitter of excitation energy in phycobilisomes. Thylakoid membranes washed in low ionic strength buffer containing phenylmethylsulfonylfluoride lose all biliproteins, but retain the 95 kD and 80 kD polypeptides. As suggested by Tandeau de Marsac and Cohen-Bazire, these are likely to be the polypeptides involved in binding the phycobilisome to the membrane. As these polypeptides are isolated with allophycocyanin I, structural evidence is provided for placing allophycocyanin I as the bridge between the phycobilisome and the membrane. These Group I polypeptides and the 29 kD polypeptide (involved in rod attachment to the APC core) are particularly susceptible to proteolytic breakdown. It is thought that in vivo the active protease may be selectively attacking these polypeptides to detach the phycobilisome from the membrane and release the phycoerythrin and phycocyanin containing rods from the allophycocyanin core for greater susceptibility of the biliproteins to protease attack.  相似文献   

9.
Core substructure in cyanobacterial phycobilisomes   总被引:4,自引:0,他引:4  
The tricylindrical core of Synechocystis 6701 phycobilisomes is made up of four types of allophycocyanin-containing complexes: A, (alpha AP beta AP)3; B, (alpha AP beta AP)3 .10K; C, (alpha APB1 alpha AP2 beta AP3).10K; D, (alpha AP beta AP)2.18.5K.99K; where AP is allophycocyanin, APB is allophycocyanin B, and 10K, 18.5K, and 99K are polypeptides of 10,000, 18,500, and 99,000 daltons, respectively. The 18.5K polypeptide is a hitherto unrecognized biliprotein subunit with a single phycocyanobilin prosthetic group. The tricylindrical core is made up of 12 subcomplexes in the molar ratio of A:B:C:D: of 4:4:2:2. Complexes C and D act as terminal energy acceptors. From these results and previous analysis of the bicylindrical core of Synechococcus 6301 phycobilisomes [14,15] it is proposed that the two cylinders of the Synechocystis 6701 core, proximal to the thylakoid membrane, each have the composition ABCD, and that the distal cylinder has the composition A2B2.  相似文献   

10.
11.
Ley AC  Butler WL 《Plant physiology》1977,59(5):974-980
Allophycocyanin B was purified to homogeneity from the eukaryotic red alga Porphyridium cruentum. This biliprotein is distinct from the allophycocyanin of P. cruentum with respect to subunit molecular weights, and spectroscopic and immunological properties. The purified allophycocyanin B has a long wavelength absorption maximum at 669 nm at room temperature and at 675 nm at −196 C while the fluorescence emission maximum is at 673 nm at room temperature and 679 nm at −196 C. The emission spectrum of allophycocyanin shifted only 1 nm, from 659 to 660 nm, on cooling to −196 C, and was the same with allophycocyanin crystals as it was with pure solutions of the pigment. Phycobilisomes from P. cruentum have a major fluorescence emission band at 680 nm at −196 C which emanates from the small amount of allophycocyanin B present in the phycobilisomes. Light energy absorbed by the bulk of the biliprotein pigments is transferred to allophycocyanin B with high efficiency.  相似文献   

12.
Two ORFs, cphA and cphB, encoding proteins CphA and CphB with strong similarities to plant phytochromes and to the cyanobacterial phytochrome Cph1 of Synechocystis sp. PCC 6803 have been identified in the filamentous cyanobacterium Calothrix sp. PCC7601. While CphA carries a cysteine within a highly conserved amino-acid sequence motif, to which the chromophore phytochromobilin is covalently bound in plant phytochromes, in CphB this position is changed into a leucine. Both ORFs are followed by rcpA and rcpB genes encoding response regulator proteins similar to those known from the bacterial two-component signal transduction. In Calothrix, all four genes are expressed under white light irradiation conditions, albeit in low amounts. For heterologous expression and convenient purification, the cloned genes were furnished with His-tag encoding sequences at their 3' end and expressed in Escherichia coli. The two recombinant apoproteins CphA and CphB bound the chromophore phycocyanobilin (PCB) in a covalent and a noncovalent manner, respectively, and underwent photochromic absorption changes reminiscent of the P(r) and P(fr) forms (red and far-red absorbing forms, respectively) of the plant phytochromes and Cph1. A red shift in the absorption maxima of the CphB/PCB complex (lambda(max) = 685 and 735 nm for P(r) and P(fr), respectively) is indicative for a noncovalent incorporation of the chromophore (lambda(max) of P(r), P(fr) of CphA: 663, 700 nm). A CphB mutant generated at the chromophore-binding position (Leu246-->Cys) bound the chromophore covalently and showed absorption spectra very similar to its paralog CphA, indicating the noncovalent binding to be the only cause for the unexpected absorption properties of CphB. The kinetics of the light-induced P(fr) formation of the CphA-PCB chromoprotein, though similar to that of its ortholog from Synechocystis, showed differences in the kinetics of the P(fr) formation. The kinetics were not influenced by ATP (probing for autophosphorylation) or by the response regulator. In contrast, the light-induced kinetics of the CphB-PCB complex was markedly different, clearly due to the noncovalently bound chromophore.  相似文献   

13.
We have constructed a mutant Synechococcus sp. PCC 7942, termed R2HECAT, in which the entire phycobilisome rod operon has been deleted. In the whole cell absorption spectra of R2HECAT, the peak corresponding to phycocyanin (PC), max620 nm, could not be detected. However, a single pigment-protein fraction with max=654 nm could be isolated on sucrose gradients from R2HECAT. Analysis of this pigment-protein fraction by non-denaturing PAGE indicates an apparent molecular mass of about 1200–1300 kDa. On exposure to low temperature, the isolated pigment-protein complex dissociated to a protein complex with a molecular mass of about 560 kDa. When analysed by SDS-PAGE, the pigment-protein fraction was found to consist of the core polypeptides but lacked PC, 27, 33, 30, and the 9 kDa polypeptides which are a part of the rods. All the chromophore bearing polypeptides of the core were found to be chromophorylated. CD as well as absorption spectra showed the expected maxima around 652 and 675 nm from allophycocyanin (APC) and allophycocyanin B (APC-B) chromophores. Low temperature fluorescence and excitation spectra also showed that the core particles were fully functional with respect to the energy transfer between the APC chromophores. We conclude that PC and therefore the rods are dispensable for the survival of Synechococcus sp. PCC 7942. The results indicate that stable and functional core can assemble in absence of the rods. These rod-less phycobilisome core is able to transfer energy to Photosystem II.Abbreviations PS II Photosystem II - PC phycocyanin - APC allophycocyanin - APC-B allophycocyanin B - PAGE polyacrylamide gel electrophoresis - Cml chloramphenicol - kbp kilobase pairs  相似文献   

14.
15.
The cyanobacterial light‐harvesting complex, the phycobilisome, is degraded under nutrient limitation, allowing the cell to adjust light absorbance to its metabolic capacity. This large light‐harvesting antenna comprises a core complex of the pigment allophycocyanin, and rod‐shaped pigment assemblies emanating from the core. NblA, a low‐molecular‐weight protein, is essential for degradation of the phycobilisome. NblA mutants exhibit high absorbance of rod pigments under conditions that generally elicit phycobilisome degradation, implicating NblA in degradation of these pigments. However, the vast abundance of rod pigments and the substantial overlap between the absorbance spectra of rod and core pigments has made it difficult to directly associate NblA with proteolysis of the phycobilisome core. Furthermore, lack of allophycocyanin degradation in an NblA mutant may reflect a requirement for rod degradation preceding core degradation, and does not prove direct involvement of NblA in proteolysis of the core pigment. Therefore, in this study, we used a mutant lacking phycocyanin, the rod pigment of Synechococcus elongatusPCC7942, to examine whether NblA is required for allophycocyanin degradation. We demonstrate that NblA is essential for degradation of the core complex of the phycobilisome. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for the interaction of NblA with allophycocyanin, and indicated that NblA interacts with allophycocyanin complexes that are associated with the photosynthetic membranes. Based on these data, as well as previous observations indicating interaction of NblA with phycobilisomes attached to the photosynthetic membranes, we suggest a model for sequential phycobilisome disassembly by NblA.  相似文献   

16.
Blue light induced quenching in a Synechocystis sp. PCC 6803 strain lacking both photosystems is only related to allophycocyanin fluorescence. A fivefold decrease in the fluorescence level in two bands near 660 and 680 nm is attributed to different allophycocyanin forms in the phycobilisome core. Some low-heat sensitive component inactivated at 53 °C is involved in the quenching process. Enormous allophycocyanin fluorescence in the absence of the photosystems reveals a dark stage in this quenching. Thus, we present evidence that light activation of the carotenoid-binding protein and formation of a quenching center within the phycobilisome core in vivo are discrete events in a multistep process.  相似文献   

17.
Abstract Sequences homologous to the structural genes for dinitrogenase ( nifD and nifK ) and nitrogenase reductase ( nifH ) have been cloned from the filamentous, non-heterocystous cyanobacterium Pseudanabaena PCC7409. The nifHDK homologous sequences were shown to reside on a 6.5-kb Eco RI restriction fragment by using a restriction fragment encoding the Klebsiella pneumoniae nifHDK genes as a heterologous hybridization probe. This 6.5-kb restriction fragment was cloned from a λ gt.wes Eco RI library of the Paseudanabaena sp. PCC7409 genome. This fragment was subcloned into the plasmid vector pUC9 to generate plasmid pPSU20. A detailed physical map of the insert in plasmid pPSU20 was determined, and relative positions of the nifH, nifD , and nifK homologous sequences on this fragment were determined by hybridization analysis with gene-specific fragments derived from the corresponding Anabaena sp. PCC7120 genes. The results indicate that these genes are contiguous in Pseudanabaena sp. PCC 7409 and are arranged in the order nifH, nifD , and nifK . This arrangement resembles that observed for other non-heterocystous cyanobacteria but differs from that observed for Anabaena, Calothrix , and Nostoc species.  相似文献   

18.
19.
The core of the phycobilisomes of Synechococcus 6301 (Anacystis nidulans) strain AN112 consists of two cylindrical elements each made up of the same four distinct subcomplexes: A (alpha AP beta AP)3; B (alpha AP beta AP)2 . 18.3K . 75K; C (alpha 1APB alpha 2AP beta 3AP) . 10.5K; and D (alpha AP beta AP)3 . 10.5K, where alpha AP and beta AP are the subunits of allophycocyanin, alpha APB is the subunit of allophycocyanin B, and 18.3K, 75K, and 10.5K are polypeptides of 18,300, 75,000, and 10,500 Da, respectively. An 18 S subassembly containing subcomplexes A and B has previously been characterized (Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) J. Biol. Chem. 257, 4077-4086; Lundell, D. J., and Glazer, A. N. (1983) J. Biol. Chem. 258, 894-901, 902-908). A ternary core subassembly, containing complexes A, B, and C, was isolated from a limited tryptic digest of AN112 phycobilisomes and characterized with respect to composition and spectroscopic properties. Isolation of this ternary subassembly also establishes that subcomplex D must occupy a terminal position in each of the two core cylinders. Spectroscopic studies of the individual complexes, A-D, of the subassemblies AB and ABC, and of intact AN112 phycobilisomes showed core assembly-dependent changes in the circular dichroism spectra indicative of changes in the environment and/or conformation of the bilin chromophores within the individual subcomplexes. Two terminal energy acceptors are present in the phycobilisome core, alpha APB and 75K. No indication of interaction between the chromophores on these polypeptides was detected by circular dichroism spectroscopy. This result indicates that the bilins on alpha APB and 75K act as independent energy acceptors rather than as exciton pairs.  相似文献   

20.
Low temperature (-196C) and room temperature (25C) absorption spectra of a family of allophycocyanin spectral forms isolated from Nostoc sp. phycobilisomes as well as of the phycobilisomes themselves have been analyzed by Gaussian curve-fitting. Allophycocyanin I and B share long wavelength components at 668 and 679 nm, bands that are absent from allophycocyanin II and III. These long wavelength absorption components are apparently responsible for the 20 nm difference between the 680 nm fluorescence emission maximum of allophycocyanin I and B and the 660 nm maximum of II and III. This indicates that allophycocyanin I and B are the final acceptors of excitation energy in the phycobilisome and the excitation energy transfer bridge linking the phycobilisome with the chlorophyll-containing thylakoid membranes. These Gaussian components are also found in resolved spectra of phycobilisomes, are arguing against this family of allophycocyanin molecules being artifactual products of protein purification procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号