首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
 Aldehyde:ferredoxin oxidoreductase (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus is a homodimeric protein. Each subunit carries one [4Fe-4S] cubane and a novel tungsten cofactor containing two pterins. A single iron atom bridges between the subunits. AOR has previously been studied with EPR spectroscopy in an inactive form known as the red tungsten protein (RTP): reduced RTP exhibits complex EPR interaction signals. We have now investigated the active enzyme AOR with EPR, and we have found an S = 1/2 plus S = 3/2 spin mixture from a non-interacting [4Fe-4S]1+ cluster in the reduced enzyme. Oxidized AOR affords EPR signals typical for W(V) with g–values of 1.982, 1.953, and 1.885. The W(V) signals disappear at a reduction potential E m,7.5 of +180 mV. This unexpectedly high value indicates that the active-site redox chemistry is based on the pterin part of the cofactor. Received: 18 December 1995 / Accepted: 26 March 1996  相似文献   

2.
J Heider  K Ma    M W Adams 《Journal of bacteriology》1995,177(16):4757-4764
Thermococcus strain ES-1 is a strictly anaerobic, hyperthermophilic archaeon that grows at temperatures up to 91 degrees C by the fermentation of peptides. It is obligately dependent upon elemental sulfur (S(o)) for growth, which it reduces to H2S. Cell extracts contain high aldehyde oxidation activity with viologen dyes as electron acceptors. The enzyme responsible, which we term aldehyde ferredoxin oxidoreductase (AOR), has been purified to electrophoretic homogeneity. AOR is a homodimeric protein with a subunit M(r) of approximately 67,000. It contains molybdopterin and one W, four to five Fe, one Mg, and two P atoms per subunit. Electron paramagnetic resonance analyses of the reduced enzyme indicated the presence of a single [4Fe-4S]+ cluster with an S = 3/2 ground state. While AOR oxidized a wide range of aliphatic and aromatic aldehydes, those with the highest apparent kcat/Km values (> 10 microM-1S-1) were acetaldehyde, isovalerylaldehyde, and phenylacetaldehyde (Km values of < 100 microM). The apparent Km value for Thermococcus strain ES-1 ferredoxin was 10 microM (with crotonaldehyde as the substrate). Thermococcus strain ES-1 AOR also catalyzed the reduction of acetate (apparent Km of 1.8 mM) below pH 6.0 (with reduced methyl viologen as the electron donor) but at much less than 1% of the rate of the oxidative reaction (with benzyl viologen as the electron acceptor at pH 6.0 to 10.0). The properties of Thermococcus strain ES-1 AOR are very similar to those of AOR previously purified from the saccharolytic hyperthermophile Pyrococcus furiosus, in which AOR was proposed to oxidize glyceraldehyde as part of a novel glycolytic pathway (S. Mukund and M. W. W. Adams, J. Biol. Chem. 266:14208-14216, 1991). However, Thermococcus strain ES-1 is not known to metabolize carbohydrates, and glyceraldehyde was a very poor substrate (kcat/Km of < 0.2 microM-1S-1) for its AOR. The most efficient substrates for Thermococcus strain ES-1 AOR were the aldehyde derivatives of transaminated amino acids. This suggests that the enzyme functions to oxidize aldehydes generated during amino acid catabolism, although the possibility that AOR generates aldehydes from organic acids produced by fermentation cannot be ruled out.  相似文献   

3.
Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals.  相似文献   

4.
The archaebacterium, Pyrococcus furiosus, is a strict anaerobe that grows optimally at 100 degrees C by a fermentative-type metabolism in which H2 and CO2 are the only detectable products. Tungsten is known to stimulate the growth of this organism. A red-colored tungsten-containing protein (abbreviated RTP) that is redox-active and extremely thermostable has been purified. RTP is a monomer of Mr = 85,000 and contains approximately 6 iron, 1 tungsten, and 4 acid-labile sulfide atoms/molecule. Titrations using visible spectroscopy were consistent with the oxidation and reduction of the protein each requiring two electrons/molecule, suggesting that these metals and the sulfide are arranged in two redox active centers. P. furiosus ferredoxin served as an electron acceptor for the protein. Dithionite-reduced RTP exhibited a remarkable and complex EPR spectrum at 6 K with g values ranging from 1.3 to 10.0. This was shown to arise from the spin-coupling interaction of two paramagnetic centers. One (center A) has a S = 3/2 spin system (effective g values: gx = 3.33, gy = 4.75, and gz = 1.92, where D = 4.3 cm-1 and lambda = 0.135), whereas the EPR properties of the other (center B) could not be deduced. Nevertheless, theoretical analyses show how the redox properties of both centers may be determined using EPR spectroscopy. Their midpoint potentials (Em) at 20 degrees C and pH 8.0 are -410 mV (center A) and -500 mV (center B) with an effective potential for the spin coupled system (Em, A + B) of -505 mV. The Em values are dependent on temperature (delta Em/delta T = -2 mV/degrees C between 20 and 70 degrees C) and pH with pK alpha values of 8.0 (A) and approximately 8.5 (B). The Em values at 100 degrees C, the growth temperature, were estimated at -590, -650, and -660 mV for centers A, B, and A + B, respectively. These data indicate that RTP catalyzes a dehydrogenase-type reaction of extremely low potential, which involves the transfer of two protons and of two electrons, to and from two adjacent and interacting but nonidentical metal centers.  相似文献   

5.
The tungsten metallome of the hyperthermophilic archaeon Pyrococcus furiosus has been investigated using electroanalytical metal analysis and native-native 2D-PAGE with the radioactive tungsten isotope (187)W (t(1/2) = 23.9 h). P. furiosus cells have an intracellular tungsten concentration of 29 μM, of which ca. 30% appears to be free tungsten, probably in the form of tungstate or polytungstates. The remaining 70% is bound by five different tungsten enzymes: formaldehyde ferredoxin oxidoreductase, aldehyde ferredoxin oxidoreductase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase and the tungsten-containing oxidoreductases WOR4 and WOR5. The membrane proteome of P. furiosus is devoid of tungsten. The differential expression, as measured by the tungsten level, of the five soluble tungsten enzymes when the cells are subjected to a cold-shock shows a strong correlation with previously published DNA microarray analyses.  相似文献   

6.
Crystal structures of formaldehyde ferredoxin oxidoreductase (FOR), a tungstopterin-containing protein from the hyperthermophilic archaeon Pyrococcus furiosus, have been determined in the native state and as a complex with the inhibitor glutarate at 1.85 A and 2. 4 A resolution, respectively. The native structure was solved by molecular replacement using the structure of the homologous P. furiosus aldehyde ferredoxin oxidoreductase (AOR) as the initial model. Residues are identified in FOR that may be involved in either the catalytic mechanism or in determining substrate specificity. The binding site on FOR for the physiological electron acceptor, P. furiosus ferredoxin (Fd), has been established from an FOR-Fd cocrystal structure. Based on the arrangement of redox centers in this structure, an electron transfer pathway is proposed that begins at the tungsten center, leads to the (4Fe:4S) cluster of FOR via one of the two pterins that coordinate the tungsten, and ends at the (4Fe:4S) cluster of ferredoxin. This pathway includes two residues that coordinate the (4Fe:4S) clusters, Cys287 of FOR and Asp14 of ferredoxin. Similarities in the active site structures between FOR and the unrelated molybdoenzyme aldehyde oxidoreductase from Desulfovibrio gigas suggest that both enzymes utilize a common mechanism for aldehyde oxidation.  相似文献   

7.
Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.  相似文献   

8.
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.  相似文献   

9.
Pyrococcus furiosus is a strictly anaerobic heterotroph that grows optimally around 100 °C. It can be cultured in an artificial seawater-based medium with either peptides or maltose as the carbon source. Significant stimulation of cell yields were observed when trace levels of tungsten (as tungstate) were added to an energy-limited chemostat culture of P. furiosus when maltose is present, but not when peptides were the sole carbon source. The addition of tungsten also led to dramatic increases in the specific activities within cell-free extracts of aldehyde ferredoxin oxidoreductase (AOR), which is a tungsten-iron-sulfur protein. Moreover, the addition of tungsten to cells growing in maltose/peptide medium dramatically reduced the specific activity of intracellular proteases, suggesting a preference for the utilization of maltose over peptides as the carbon and energy source in the presence of tungsten.Non-standard abbreviations EPPS N-[2-Hydroxyethyl]-piperazine-N-[3-propane-sulfonic acid] - VFA volatile fatty acids - LNA 1-Lys-p-nitroaniline - MeOSAPTNA MeO-Suc-Arg-Pro-Tyr-p-nitroaniline - AOR aldehyde ferredoxin oxidoreductase  相似文献   

10.
We report the kinetic behavior of the enzyme aldehyde oxidoreductase (AOR) from the sulfate reducing bacterium Desulfovibrio gigas (Dg) encapsulated in reverse micelles of sodium bis-(2-ethylhexyl) sulfosuccinate in isooctane using benzaldehyde, octaldehyde, and decylaldehyde as substrates. Dg AOR is a 200-kDa homodimeric protein that catalyzes the conversion of aldehydes to carboxylic acids. Ultrasedimentation analysis of Dg AOR-containing micelles showed the presence of 100-kDa molecular weight species, confirming that the Dg AOR subunits can be dissociated. UV-visible spectra of encapsulated Dg AOR are indistinguishable from the enzyme spectrum in solution, suggesting that both protein fold and metal cofactor are kept intact upon encapsulation. The catalytic constant (k(cat)) profile as a function of the micelle size W(0) (W(0)=[H(2)O]/[AOT]) using benzaldehyde as substrate showed two bell-shaped activity peaks at W(0)=20 and 26. Furthermore, enzymatic activity for octaldehyde and decylaldehyde was detected only in reverse micelles. Like for the benzaldehyde kinetics, two peaks with both similar k(cat) values and W(0) positions were obtained. EPR studies using spin-labeled reverse micelles indicated that octaldehyde and benzaldehyde are intercalated in the micelle membrane. This suggests that, though Dg AOR is found in the cytoplasm of bacterial cells, the enzyme may catalyze the reaction of substrates incorporated into a cell membrane.  相似文献   

11.
Mononuclear Mo-containing enzymes of the xanthine oxidase (XO) family catalyze the oxidative hydroxylation of aldehydes and heterocyclic compounds. The molybdenum active site shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. The XO family member aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is an exception as presents in its catalytically competent form an equatorial oxo ligand instead of the sulfido ligand. Despite this structural difference, inactive samples of DgAOR can be activated upon incubation with dithionite plus sulfide, a procedure similar to that used for activation of desulfo-XO. The fact that DgAOR does not need a sulfido ligand for catalysis indicates that the process leading to the activation of inactive DgAOR samples is different to that of desulfo-XO. We now report a combined kinetic and X-ray crystallographic study to unveil the enzyme modification responsible for the inactivation and the chemistry that occurs at the Mo site when DgAOR is activated. In contrast to XO, which is activated by resulfuration of the Mo site, DgAOR activation/inactivation is governed by the oxidation state of the dithiolene moiety of the pyranopterin cofactor, which demonstrates the non-innocent behavior of the pyranopterin in enzyme activity. We also showed that DgAOR incubation with dithionite plus sulfide in the presence of dioxygen produces hydrogen peroxide not associated with the enzyme activation. The peroxide molecule coordinates to molybdenum in a η2 fashion inhibiting the enzyme activity.  相似文献   

12.
A tungsten-containing aldehyde:ferredoxin oxidoreductase (AOR) has been purified to homogeneity from Pyrobaculum aerophilum. The N-terminal sequence of the isolated enzyme matches a single open reading frame in the genome. Metal analysis and electron paramagnetic resonance (EPR) spectroscopy indicate that the P. aerophilum AOR contains one tungsten center and one [4Fe-4S]2+/1+ cluster per 68-kDa monomer. Native AOR is a homodimer. EPR spectroscopy of the purified enzyme that has been reduced with the substrate crotonaldehyde revealed a W(V) species with gzyx values of 1.952, 1.918, 1.872. The substrate-reduced AOR also contains a [4Fe-4S]1+ cluster with S=3/2 and zero field splitting parameters D=7.5 cm–1 and E/D=0.22. Molybdenum was absent from the enzyme preparation. The P. aerophilum AOR lacks the amino acid sequence motif indicative for binding of mononuclear iron that is typically found in other AORs. Furthermore, the P. aerophilum AOR utilizes a 7Fe ferredoxin as the putative physiological redox partner, instead of a 4Fe ferredoxin as in Pyrococcus furiosus. This 7Fe ferredoxin has been purified from P. aerophilum, and the amino acid sequence has been identified using mass spectrometry. Direct electrochemistry of the ferredoxin showed two one-electron transitions, at –306 and –445 mV. In the presence of 55 M ferredoxin the AOR activity is 17% of the activity obtained with 1 mM benzyl viologen as an electron acceptor.  相似文献   

13.
Mammalian xanthine oxidase (XO) and Desulfovibrio gigas aldehyde oxidoreductase (AOR) are members of the XO family of mononuclear molybdoenzymes that catalyse the oxidative hydroxylation of a wide range of aldehydes and heterocyclic compounds. Much less known is the XO ability to catalyse the nitrite reduction to nitric oxide radical (NO). To assess the competence of other XO family enzymes to catalyse the nitrite reduction and to shed some light onto the molecular mechanism of this reaction, we characterised the anaerobic XO- and AOR-catalysed nitrite reduction. The identification of NO as the reaction product was done with a NO-selective electrode and by electron paramagnetic resonance (EPR) spectroscopy. The steady-state kinetic characterisation corroborated the XO-catalysed nitrite reduction and demonstrated, for the first time, that the prokaryotic AOR does catalyse the nitrite reduction to NO, in the presence of any electron donor to the enzyme, substrate (aldehyde) or not (dithionite). Nitrite binding and reduction was shown by EPR spectroscopy to occur on a reduced molybdenum centre. A molecular mechanism of AOR- and XO-catalysed nitrite reduction is discussed, in which the higher oxidation states of molybdenum seem to be involved in oxygen-atom insertion, whereas the lower oxidation states would favour oxygen-atom abstraction. Our results define a new catalytic performance for AOR—the nitrite reduction—and propose a new class of molybdenum-containing nitrite reductases.  相似文献   

14.
K Ma  M W Adams 《Journal of bacteriology》1994,176(21):6509-6517
Pyrococcus furiosus is an anaerobic archaeon that grows optimally at 100 degrees C by the fermentation of carbohydrates yielding acetate, CO2, and H2 as the primary products. If elemental sulfur (S0) or polysulfide is added to the growth medium, H2S is also produced. The cytoplasmic hydrogenase of P. furiosus, which is responsible for H2 production with ferredoxin as the electron donor, has been shown to also catalyze the reduction of polysulfide to H2S (K. Ma, R. N. Schicho, R. M. Kelly, and M. W. W. Adams, Proc. Natl. Acad. Sci. USA 90:5341-5344, 1993). From the cytoplasm of this organism, we have now purified an enzyme, sulfide dehydrogenase (SuDH), which catalyzes the reduction of polysulfide to H2S with NADPH as the electron donor. SuDH is a heterodimer with subunits of 52,000 and 29,000 Da. SuDH contains flavin and approximately 11 iron and 6 acid-labile sulfide atoms per mol, but no other metals were detected. Analysis of the enzyme by electron paramagnetic resonance spectroscopy indicated the presence of four iron-sulfur centers, one of which was specifically reduced by NADPH. SuDH has a half-life at 95 degrees C of about 12 h and shows a 50% increase in activity after 12 h at 82 degrees C. The pure enzyme has a specific activity of 7 mumol of H2S produced.min-1.mg of protein-1 at 80 degrees C with polysulfide (1.2 mM) and NADPH (0.4 mM) as substrates. The apparent Km values were 1.25 mM and 11 microM, respectively. NADH was not utilized as an electron donor for polysulfide reduction. P. furiosus rubredoxin (K(m) = 1.6 microM) also functioned as an electron acceptor for SuDH, and SuDH catalyzed the reduction of NADP with reduced P. furiosus ferredoxin (K(m) = 0.7 microM) as an electron donor. The multiple activities of SuDH and its proposed role in the metabolism of S(o) and polysulfide are discussed.  相似文献   

15.
Thermotoga maritima is the most thermophilic eubacterium currently known and grows up to 90 degrees C by a fermentative metabolism in which H2, CO2, and organic acids are end products. It was shown that the production of H2 is catalyzed by a single hydrogenase located in the cytoplasm. The addition of tungsten to the growth medium was found to increase both the cellular concentration of the hydrogenase and its in vitro catalytic activity by up to 10-fold, but the purified enzyme did not contain tungsten. It is a homotetramer of Mr 280,000 and contains approximately 20 atoms of Fe and 18 atoms of acid-labile sulfide/monomer. Other transition metals, including nickel (and also selenium), were present in only trace amounts (less than 0.1 atoms/monomer). The hydrogenase was unstable at both 4 and 23 degrees C, even under anaerobic conditions, but no activity was lost in anaerobic buffer containing glycerol and dithiothreitol. Under these conditions the enzyme was also quite thermostable (t50% approximately 1 h at 90 degrees C) but extremely sensitive to irreversible inactivation by O2 (t50% approximately 10 s in air). The optimum pH ranges for H2 evolution and H2 oxidation were 8.6-9.5 and greater than or equal to 10.4, respectively, and the optimum temperature for catalytic activity was above 95 degrees C. In contrast to mesophilic Fe hydrogenases, the T. maritima enzyme had very low H2 evolution activity, did not use T. maritima ferredoxin as an electron donor for H2 evolution, was inhibited by acetylene but not by nitrite, and exhibited EPR signals typical of [2Fe-2S]1+ clusters. Moreover, the oxidized enzyme did not exhibit the rhombic EPR signal that is characteristic of the catalytic iron-sulfur cluster of mesophilic Fe hydrogenases. These data suggest that T. maritima hydrogenase has a different FeS site and/or mechanism for catalyzing H2 production. The potential role of tungsten in regulating the activity of this enzyme is discussed.  相似文献   

16.
Roy R  Adams MW 《Journal of bacteriology》2002,184(24):6952-6956
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.  相似文献   

17.
The tungsten- and the molybdenum-containing aldehyde oxidoreductases from Clostridium formicoaceticum show, for aldehydes, K m values<30 M and K i values of millimolar concentrations. The tungsten-containing aldehyde oxidoreductase is inactivated to 50% by 3 mM KCN within 1 min, by 1 mM ferricyanide within 5 min, and by 0.05 mM chloralhydrate within 30 s. The molybdenum-containing AOR shows 50% inactivation within 1 min only with 70 mM KCN. The tungsten-containing enzyme is very sensitive to oxygen, especially in the reduced state, whereas the molybdenum-containing enzyme exhibits only moderate oxygen sensitivity without being markedly influenced by the redox state of the enzyme. The tungsten in the aldehyde oxidoreductase is bound to a pterin cofactor (Wco) of the mononucleotide form that is known for molybdopterin cofactor (Moco). The nature of the molybdenum cofactor in the molybdenum-containing aldehyde oxidoreductase is still unclear. The UV/VIS spectrum of the tungsten-containing aldehyde oxidoreductase shows a broad absorption in the range of 400 nm with a millimolar absorption coefficient of 18.1 (reduced form) and 24.8 (dehydrogenated form) at 396 nm. The epr spectrum exhibits two different W(V) signals with the following g values for signal A: 2.035, 1.959, 1.899 and signal B: 2.028, 2.017, 2.002. Dithionite-reduced enzyme shows signals of 4Fe–4S or 2Fe–2S clusters. Initial rate studies with different substrates for the carboxylate reduction led to a Bi Uni Uni Bi mechanism.Abbreviations AOR aldehyde oxidoreductase - NH 2 CO-MV 1,1-carbamoylmethylviologen - MV methylviologen - TMV 1,1,2,2-tetramethylviologen  相似文献   

18.
An anaerobic procedure was developed for the purification of the flavin:NADH oxidoreductase (flavoprotein) component of methane monooxygenase to homogeneity. The molecular weight of the flavoprotein determined by gel filtration was about 40,000, and by sedimentation equilibrium analysis, about 38,000. The purified flavoprotein is a monomeric protein with a sedimentation constant (S20,W) value of about 2.1 S. The absorption spectrum of the flavoprotein has a peak at 460 nm and shoulder at 395 nm. The fluorescent excitation and emission spectra of the fluorescent component of flavoprotein had peaks at 450, 370, and 530 nm, respectively. A FAD was identified as a prosthetic group of flavoprotein by thin-layer chromatography. The flavoprotein contained about 1 mol of FAD and 2 mol each of iron and acid-labile sulfide per mole of protein. The flavoprotein was directly reduced by NADH under anaerobic conditions. The formation of neutral flavin semiquinone was detected during anaerobic titration of flavoprotein by NADH and also as a free radical signal at a g value of 2.004 by EPR spectroscopy. The iron sulfur cluster has g values of 2.04, 1.96, and 1.87, yielding a g average of 1.96, characteristic of a Fe2S2 center. Antibody prepared against the flavoprotein reacted with flavoprotein and inhibited methane monooxygenase activity.  相似文献   

19.
20.
Clostridium formicoaceticum grown in the presence of 1 mM molybdate and about 1.5×10-5 mM tungsten (present in the 5 g yeast extract/l of the growth medium) forms two reversible aldehyde oxidoreductases in an activity ratio of about 45:55. The fraction of 45% does not bind to the octyl-Sepharose column, whereas the 55% aldehyde oxidoreductase binds to this column. From cells grown on a synthetic medium without the addition of tungstate only about 2% of the aldehyde oxidoreductase of the crude extract binds to octyl-Sepharose. The enzyme not binding to octyl-Sepharose has been purified as judged by electrophoresis. It is pure after about 50 fold enrichment. According to SDS gel electrophoresis the enzyme consists of identical 100 kD subunits. Based on gel chromatography it seems to be a trimer. Per subunit 0.6 molybdenum, 7 iron, 6.6 acid labile sulphur, about 0.1 pterin-6-carboxylic and <0.05 tungsten have been found. The first 13 amino acids from the amino end show no similarity with the W-containing aldehyde oxidoreductase from the same bacterium. With reduced tetramethylviologen (E0=–550 mV) the new molybdenum containing enzyme can reduce various aliphatic and aromatic acids to aldehydes. The pH optimum is at 6.0. For the dehydrogenation of butyraldehyde a rather broad pH region from pH 6 to 10 shows almost no variation of rate. From 15 different aldehydes acetaldehyde exhibits the highest rate. The Km value for butanal is 0.002 and for propionate 7.0 mM. Compared with the tungsten enzyme the molybdenum enzyme is only moderately oxygen-sensitive.Abbreviations AOR aldehyde oxidoreductase - BV benzylviologen - MV methylviologen - NH2CO-MV 1,1-carbamoylmethylviologen - TMV 1,1,2,2-tetramethylviologen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号