首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaculová A  Hofmanová J  Soucek K  Kozubík A 《FEBS letters》2006,580(28-29):6565-6569
Epithelial cells can be manipulated to undergo apoptosis depending on the balance between pro-survival and apoptotic signals. We showed that TRAIL-induced apoptosis may be differentially regulated by inhibitors of MEK ERK (U0126) or PI3K/Akt (LY294002) pathway in TRAIL-sensitive (HT-29) and TRAIL-resistant (SW620) human epithelial colon cancer cells. U0126 or LY294002 significantly enhanced TRAIL-induced apoptosis in HT-29 cells, but not in SW620 cells. We report a different regulation of the level of an anti-apoptotic Mcl-1 protein under MEK/ERK or PI3K/Akt pathway inhibition and suggest the mechanisms involved. A special attention was paid to the role of the ERK1/2, Akt, and glycogen synthase kinase 3beta.  相似文献   

2.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

3.
Bone marrow-derived mesenchymal stem cells (MSCs) have great potential for repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their therapeutic potential. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. The aim of this study was to investigate the anti-apoptotic effects of CREG on MSCs under hypoxic and serum deprivation (SD) conditions. We also investigated the potential mechanism(s) that may mediate the actions of CREG. All experiments were performed on rat bone marrow MSCs. Apoptosis was induced by exposure of cells to hypoxia/SD in a sealed GENbox hypoxic chamber. Effects of CREG were investigated in the absence or presence of inhibitors that target phosphoinositide 3-kinase (PI3K). We found that the overexpression of CREG markedly protected MSCs from hypoxia/SD-induced apoptosis through inhibition of the mitochondrial apoptotic pathway, leading to attenuation of caspase-3. Moreover, CREG enhanced Akt phosphorylation and decreased the expression of p53 in MSCs under hypoxic/SD conditions. The PI3K/Akt inhibitor LY294002 significantly increased the amount of p53 protein and attenuated the anti-apoptotic effects of CREG on MSCs. This study indicates that CREG is a novel and potent survival factor for MSCs, therefore, it may be a useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.  相似文献   

4.
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.  相似文献   

5.
Angiopoietin-like 4 (ANGPTL4) is a potential anti-apoptotic agent for various cells. We examined the protective effect of ANGPTL4 on hypoxia/serum deprivation (SD)-induced apoptosis of MSCs, as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by hypoxia/SD for up to 24 hr, and assessed by flow cytometry and TUNEL assay. Expression levels of Akt, ERK1/2, focal adhesion kinase (FAK), Src, Bcl-2, Bax, cytochrome C and cleaved caspase-3 were detected by Western blotting. Integrin β1 mRNA was detected by qRT-PCR. Mitochondrial membrane potential was assayed using a membrane-permeable dye. Hypoxia/SD-induced apoptosis was significantly attenuated by recombinant rat ANGPTL4 in a concentration dependent manner. Moreover, ANGPTL4 decreased the hypoxia/SD-induced caspase-3 cleavage and the cytochrome C release, but increased the Bcl-2/Bax ratio and the mitochondrial membrane potential. Decreased expression of integrin β1, the ANGPTL4 receptor was observed during hypoxia/SD conditions, however, such decrease was reversed by ANGPTL4. In addition, ANGPTL4 induced integrin β1-associated FAK and Src phosphorylation, which was blocked by anti-integrin β1 antibody. ANGPTL4 also reversed the hypoxia/SD-induced decrease of Akt and ERK 1/2 phosphorylation, and the effect of ANGPTL4 was abolished by inhibitors of either integrins, ERK1/2, or phosphatidylinositol 3-kinase (PI3K). Blocking integrinβ1, Akt or ERK largely attenuated anti-apoptotic effect of ANGPTL4. ANGPTL4 protects MSCs from hypoxia/SD-induced apoptosis by interacting with integrins to stimulate FAK complex, leading to downstream ERK1/2 and PI3K/Akt signaling pathways and mimicking the pathway in which MSCs contact with the extracellular matrix.  相似文献   

6.
Previously, we reported that somatostatins (SS) inhibit organismal growth by reducing hepatic growth hormone (GH) sensitivity and by inhibiting insulin-like growth factor I (IGF-I) production. In this study, we used hepatocytes isolated from rainbow trout to elucidate the mechanism(s) associated with the extrapituitary growth-inhibiting actions of SS. SS-14, a predominant SS isoform, stimulated tyrosine phosphorylation of several endogenous proteins, including extracellular signal-regulated kinase (ERK), a member the mitogen-activated protein kinase (MAPK) family, and protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K). SS-14 specifically stimulated the phosphorylation of both ERK 1/2 and Akt in a concentration-dependent fashion. This activation occurred within 5-15 min, then subsided after 1 h. The ERK inhibitor U0126 retarded SS-14-stimulated phosphorylation of ERK 1/2, whereas the PI3K inhibitor LY294002 blocked SS-14-stimulated phosphorylation of Akt. SS-14-inhibited expression of GH receptor (GHR) mRNA was blocked by U0126 but not by LY294002. By contrast, U1026 had no effect on SS-14 inhibition of GH-stimulated IGF-I mRNA expression, whereas LY294002 partially blocked the inhibition of GH-stimulated IGF-I mRNA expression by SS-14. These results indicate that SS-14-inhibited GHR expression is mediated by the ERK signaling pathway and that the PI3K/Akt pathway mediates, at least in part, SS-14 inhibition of GH-stimulated IGF-I expression.  相似文献   

7.
Jin L  Hu X  Feng L 《Journal of neurochemistry》2005,93(5):1251-1261
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth and bromodeoxyuridine (BrdU) incorporation in a dose-dependent manner. U0126, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, both inhibited FGF2-induced BrdU incorporation, suggesting that the extracellular signal-regulated kinase1/2 (ERK1/2) and PI3K pathways are required for FGF2-induced NP cell proliferation. NT3 significantly inhibited FGF2-induced phosphorylation of Akt and glycogen synthase kinase 3beta (GSK3beta), a downstream kinase of Akt, whereas phosphorylation of ERK1/2 was unaffected. The inhibitory effect of NT3 on FGF2-induced NP cell proliferation was abolished by LY294002, and treatment with SB216763, a specific GSK3 inhibitor, antagonized the NT3 effect, rescuing both neurosphere growth and BrdU incorporation. Moreover, experiments with anti-NT3 antibody revealed that endogenous NT3 also plays a role in inhibiting FGF2-induced NP cell proliferation, and that anti-NT3 antibody enhanced phospho-Akt and phospho-GSK3beta levels in the presence of FGF2. These findings indicate that FGF2-induced NP cell proliferation is inhibited by NT3 via the PI3K/GSK3 pathway.  相似文献   

8.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。  相似文献   

9.
In the present study we focused in the PI3K/Akt pathway which plays a key role in neuronal survival. Here we show that inhibition of PI3K/Akt by means of LY294002 induces apoptosis via a caspase-dependent and calpain-independent pathway in cerebellar granule neurons (CGNs). This finding was confirmed using zVAD-fmk, a widely caspase inhibitor that prevents apoptosis. For this purpose, we compared two models of apoptosis in CGNs, namely inhibition of PI3K/Akt, and serum potassium deprivation (S/K deprivation). In contrast to the S/K deprivation model, caspase-3 was not activated when PI3K is inhibited. Likewise, CDK5 activation was not involved in this apoptotic process, because calpain activation is responsible for the formation of CDK5/p25 neurotoxic form. However, S/K deprivation activated calpain, as it is shown by α-spectrin breakdown, and favoured the formation of CDK5/p25. Moreover, although PI3K/Akt inhibition enhanced pRbser780 phosphorylation, no increase in the expression of cell-cycle proteins, namely: cyclin D, cyclin E, CDK2 or CDK4, was detected. Furthermore, BrdU incorporation assay did not shown any increase in DNA synthesis. Likewise, PI3K/Akt inhibition increased GSK3β activity and c-Jun phosphorylation, which implicates these two pathways in this apoptotic route. Although previous reports suggest that apoptosis induced in CGNs by LY294002 and S/K deprivation causes PI3K inhibition and increases GSK3β activity and c-Jun phosphorylation activation, our results demonstrate substantial differences between them and point to a key role of GSK3β in the apoptosis induced in CGNs in the two models tested.  相似文献   

10.
Liu CL  Xie LX  Li M  Durairajan SS  Goto S  Huang JD 《PloS one》2007,2(12):e1321

Background

Salvianolic acid B (Sal B) is one of the most bioactive components of Salvia miltiorrhiza, a traditional Chinese herbal medicine that has been commonly used for prevention and treatment of cerebrovascular disorders. However, the mechanism responsible for such protective effects remains largely unknown. It has been considered that cerebral endothelium apoptosis caused by reactive oxygen species including hydrogen peroxide (H2O2) is implicated in the pathogenesis of cerebrovascular disorders.

Methodology and Principal Findings

By examining the effect of Sal B on H2O2-induced apoptosis in rat cerebral microvascular endothelial cells (rCMECs), we found that Sal B pretreatment significantly attenuated H2O2-induced apoptosis in rCMECs. We next examined the signaling cascade(s) involved in Sal B-mediated anti-apoptotic effects. We showed that H2O2 induces rCMECs apoptosis mainly through the PI3K/ERK pathway, since a PI3K inhibitor (LY294002) blocked ERK activation caused by H2O2 and a specific inhibitor of MEK (U0126) protected cells from apoptosis. On the other hand, blockage of the PI3K/Akt pathway abrogated the protective effect conferred by Sal B and potentated H2O2-induced apoptosis, suggesting that Sal B prevents H2O2-induced apoptosis predominantly through the PI3K/Akt (upstream of ERK) pathway.

Significance

Our findings provide the first evidence that H2O2 induces rCMECs apoptosis via the PI3K/MEK/ERK pathway and that Sal B protects rCMECs against H2O2-induced apoptosis through the PI3K/Akt/Raf/MEK/ERK pathway.  相似文献   

11.
Activated neutrophils play an important role in the pathogenesis of sepsis, glomerulonephritis, acute renal failure, and other inflammatory processes. The resolution of neutrophil-induced inflammation relies, in large part, on removal of apoptotic neutrophils. Neutrophils are constitutively committed to apoptosis, but inflammatory mediators, such as GM-CSF, slow neutrophil apoptosis by incompletely understood mechanisms. We addressed the hypothesis that GM-CSF delays neutrophil apoptosis by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI 3-kinase) pathways. GM-CSF (20 ng/ml) significantly inhibited neutrophil apoptosis (GM-CSF, 32 vs 65% of cells p < 0. 0001). GM-CSF activated the PI 3-kinase/Akt pathway as determined by phosphorylation of Akt and BAD. GM-CSF-dependent Akt and BAD phosphorylation was blocked by the PI 3-kinase inhibitor LY294002. A role for the PI 3-kinase/Akt pathway in GM-CSF-stimulated delay of apoptosis was indicated by the ability of LY294002 to attenuate apoptosis delay. GM-CSF-dependent inhibition of apoptosis was significantly attenuated by PD98059, an ERK pathway inhibitor. LY294002 and PD98059 did not produce additive inhibition of apoptosis delay. To determine whether PI 3-kinase and ERK are used by other ligands that delay neutrophil apoptosis, we examined the role of these pathways in IL-8-induced apoptosis delay. LY294002 blocked IL-8-dependent Akt phosphorylation. PD98059 and LY294002 significantly attenuated IL-8 delay of apoptosis. These results indicate IL-8 and GM-CSF act, in part, to delay neutrophil apoptosis by stimulating PI 3-kinase and ERK-dependent pathways.  相似文献   

12.
13.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

14.
15.
We recently reported that hypoxia induces chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, to tube-forming HUVECs in an in vitro blood vessel model by activating p38 MAPK. In this report, we further examined what role p38 plays and how it is activated during hypoxia-induced apoptosis. First, in order to confirm that p38 can indeed induce apoptosis, the cells were treated with anisomycin, a p38 activator, during normoxia. The activator treatment induced apoptosis and activation of p38 and caspase-3 in a very short time, which indicated that p38 activation alone was sufficient to trigger apoptosis in tube-forming HUVECs. We then observed hypoxia-induced changes in intracellular signals, ERK1/2 and Akt. ERK1/2 inactivation was shown to occur prior to p38 activation and caspase-3 cleavage during hypoxia. On the other hand, anisomycin had no inhibitory effect on ERK1/2 activation during normoxia. It was also shown that the amount of Akt protein slightly decreased by either hypoxia or anisomycin treatment. We then investigated how these two survival signals, ERK1/2 and Akt, are involved in p38 activation by using MEK inhibitor U0126 and PI3K inhibitor LY294002. When tube-forming HUVECs were treated with U0126 or LY294002 during normoxia, the two inhibitors were able to induce apoptosis and activation of p38 and caspase-3 in a relatively short time. U0126 was able to inhibit ERK1/2 activation, but had almost no effect on Akt activation. In contrast, LY294002 was able to inhibit Akt activation, but had very little effect on ERK1/2 activation. These results indicate that ERK1/2 inactivation, rather than Akt decrease, is responsible for hypoxia-induced p38 activation. Taken together, our results strongly suggest that hypoxia-induced apoptosis is regulated through signal transduction in which inactivation of ERK1/2 leads to activation of p38, which then triggers caspase cascade as an execution mechanism of apoptosis.  相似文献   

16.
Diabetic peripheral neuropathy (DPN) is one of the most common and troublesome complications of diabetes mellitus. It has been demonstrated that nerve growth factor (NGF) exerts a pivotal role in the regulation of neuronal growth and the promotion of DPN recovery. However, the exact molecular mechanisms are not well understood. Recent studies have indicated that as a novel therapeutic target, endoplasmic reticulum (ER) stress participates in the onset and progression of DPN. In the present study, it has been demonstrated that NGF prevents the sciatic nerve from degeneration and demyelination in DPN rats. Thus, RSC 96 cells, which retain the characteristic features of Schwann cells (SCs), were cultured in medium containing 30 mM glucose (high glucose, HG) to mimic SCs in DPN mice. The 50-ng/ml dose of NGF was identified to be the optimal concentration for treating an excessive ER stress level under HG conditions for 24 h. We found that NGF treatment significantly inhibits HG-induced ER stress and subsequently suppresses ER-related apoptosis. Further, NGF administration also activates the upstream signaling pathway of ER stress, PI3K/Akt/GSK3β signaling and ERK1/2 signaling. Co-treatment with the PI3K inhibitor LY294002 or ERK1/2 inhibitor U0126 significantly reverses the protective role of NGF on HG-induced excessive ER stress and subsequent apoptosis. These observations suggest that the neuroprotective role of NGF in DPN is mediated by the inhibition of excessive ER stress via the activation of the PI3K/Akt/GSK3β and ERK1/2 signaling pathways.  相似文献   

17.
p53 is activated by stress leading to oncogenic alteration, which induces either cell cycle arrest or apoptosis, although the mechanism involved in this decision has not been fully clarified as yet. This work was undertaken to change the cellular response by inducing apoptosis with PI3K inhibitors to Saos-2 cells that had been growth-arrested in both G1 and G2/M by the wild-type activity of temperature-sensitive (ts) p53. We found that the PI3K/Akt inhibitors LY294002 and wortmannin, but not the MEK inhibitor U0126, were capable of inducing apoptosis in growth-arrested Saos-2 cells, as assessed by an increase in the sub-G1 population, pyknotic nuclei, and DNA ladder formation. We detected the cleavage of caspases 9 and 3, and PARP after LY294002 addition, accompanied by a loss of cytochrome c from the mitochondria, and observed Bax translocation to the mitochondria and down-regulation of phospho-Akt, suggesting that blocking of survival signals triggered the apoptotic signal through the mitochondrial apoptotic pathway. It is thus suggested that the PI3K/Akt pathway played an important role in determining cell fate between growth arrest and apoptosis.  相似文献   

18.
Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong anti-oxidant, anti-cancer, anti-diabetic, and anti-dementia properties. However, the cardioprotective efficacy of hispidin has not yet been investigated. In the present study, we investigated the protective effect of hispidin against oxidative stress-induced apoptosis in H9c2 cardiomyoblast cells and neonatal rat ventricular myocytes. While the treatment of H9c2 cardiomyoblast cells with hydrogen peroxide caused a loss of cell viability and an increase in the number of apoptotic cells, hispidin significantly protected the cells against hydrogen peroxide-induced cell death without any cytotoxicity as determined by XTT assay, LDH release assay, Hoechst 33342 assay, and Western blotting of apoptosis proteins such as caspase-3, Bax, and Bcl-2. Our data also shows that hispidin significantly scavenged intracellular ROS, and markedly enhanced the expression of antioxidant enzymes such as heme oxygenase-1 and catalase, which was accompanied by the concomitant activation of Akt/GSK-3β and ERK1/2 phosphorylation in H9c2 cardiomyoblast cells. The effects of hispidin on Akt and ERK phosphorylation were abrogated by LY294002 (a PI3K/Akt inhibitor) and U0126 (an ERK1/2 inhibitor). The effect of hispidin on GSK-3b activities was also blocked by LY294002. Furthermore, inhibiting the Akt/GSK-3β and ERK1/2 pathway by these inhibitors significantly reversed the hispidin-induced Bax and Bcl-2 expression, apoptosis induction, and ROS production. These findings indicate that hispidin protects against apoptosis in H9c2 cardiomyoblast cells exposed to hydrogen peroxide through reducing intracellular ROS production, regulating apoptosis-related proteins, and the activation of the Akt/GSK-3β and ERK1/2 signaling pathways.  相似文献   

19.
In the present study, we have investigated the effects of PI3K/Akt pathway on the response of human leukemia cells to fludarabine. Inhibition of PI3K/Akt pathway with a selective inhibitor (e.g., LY294002, or wortmannin) in leukemic cells markedly potentiated fludarabine-induced apoptosis. Inhibition of the PI3K/Akt downstream target mTOR by rapamycin also significantly enhanced fludarabine-induced apoptosis. The co-treatment of fludarabine/LY294002 resulted in significant attenuation in the levels of both phospho-Erk1/2 and phospho-Akt, as well as a marked increase in the level of phospho-JNK. The broad spectrum caspase inhibitor BOC-D-fmk markedly blocked fludarabine/LY-induced apoptosis, had no effect on cytochrome c release to the cytosol, and did abrogate caspase and PARP cleavage. This indicates that mitochondrial dysfunction is upstream of the caspase cascade. Moreover, constitutive activation of the MEK/Erk pathway completely blocked apoptosis induced by the combination of fludarabine/LY294002. Additionally, either constitutive activation of Akt or blockage of the JNK pathway significantly diminished apoptosis induced by the combination. Collectively, these findings demonstrate that inactivation of MAPK, Akt, and activation of the JNK pathway contributes to the induction of apoptosis induced by fludarabine/LY. Comparatively, MAPK inactivation plays a crucial role in fludarabine/LY-induced apoptosis. These results also strongly suggest that combining fludarabine with an inhibitor of the PI3K/Akt/mTOR pathway may represent a novel therapeutic strategy for hematological malignancies.  相似文献   

20.
BMP-4 and BMP-7 are associated with the suppression of granulosa cell apoptosis. LY294002 (PI3K inhibitor) or UCN-01 (PDK-1 inhibitor) increased the percentage of apoptotic cells in the granulosa cells treated with BMP-4 or BMP-7. The inhibitors of ERK and p38 (SB203580) did not increase the percentage of apoptotic cells in the granulosa cells treated with BMP-4 or BMP-7. Akt inhibitor did not induce apoptosis in the BMP-4-treated granulosa cells, whereas it did induce apoptosis of the BMP-7-treated granulosa cells. In the granulosa cells treated with BMP-4, the PKC inhibitor increased the percentage of apoptotic cells. Our data show that BMP-4 and BMP-7 are associated with granulosa cell survival via several non-Smad specific pathways: BMP-4 via the PI3K/PDK-1/PKC and BMP-7 via the PI3K/PDK-1/Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号