首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) are an important parameter of host defenses that limit viral replication after infection. Induction of effective CTL against conserved viral proteins such as Gag may be essential to the development of a safe and effective HIV type 1 (HIV-1) vaccine. DNA vaccination represents a novel strategy for inducing potent CD8(+) CTL responses in vivo. However, expression of HIV-1 structural proteins by DNA vectors has been hampered by a stringent requirement for coexpression with other viral components, such as Rev and RRE. Furthermore, even with Rev and RRE present, the level of expression of HIV-1 Gag, Pol, or Env is very low in murine cells. These problems have limited our ability to address the key issue of how to generate effective CTL responses to Gag in a mouse model. To overcome this problem, we compared several novel DNA expression vectors for HIV-1 Gag protein expression in primate and mouse cells and for generating immune responses in mice after DNA vaccination. A DNA vector containing wild type HIV-1 gag coding sequences did not induce detectable Gag expression in any of the cells tested. Attempts to increase nuclear export of Gag expression RNA by adding the constitutive transport element yielded only a moderate increase in Gag expression in monkey-derived COS cells and an even lower increase in Gag expression in HeLa cells or several mouse cell lines. In contrast, silent-site mutations in the HIV-1 gag coding sequences significantly increased Gag expression levels in all cells tested. Furthermore, this construct induced both Gag-specific antibody and CTL responses in mice after DNA vaccination. Using this construct, we achieved stable expression of HIV-1 Gag in the mouse cell line p815, which can now be used as a target cell for measuring HIV-1 Gag-specific CTL responses in immunized mice. The DNA vectors described in this study should make it possible to systematically evaluate the approaches for maximizing the induction of CTL responses against HIV-1 Gag in mouse and other animal systems.  相似文献   

2.
Pang S  Yu D  An DS  Baldwin GC  Xie Y  Poon B  Chow YH  Park NH  Chen IS 《Journal of virology》2000,74(23):10994-11000
CD4(-) epithelial cells covering mucosal surfaces serve as the primary barrier to prevent human immunodeficiency virus type 1 (HIV-1) infection. We used HIV-1 vectors carrying the enhanced green fluorescent protein gene as a reporter gene to demonstrate that HIV-1 can infect some CD4(-) human epithelial cell lines with low but significant efficiencies. Importantly, HIV-1 infection of these cell lines is independent of HIV-1 envelope proteins. The Env-independent infection of CD4(-) cells by HIV-1 suggests an alternative pathway for HIV-1 transmission. Even on virions bearing Env, a neutralizing antibody directed against gp120 is incapable of neutralizing the infection of these cells, thus raising potential implications for HIV-1 vaccine development.  相似文献   

3.
The effectiveness of attenuated poliovirus vaccines when given orally to induce both systemic and mucosal immune responses against poliovirus has resulted in an effort to develop poliovirus-based vectors to express foreign proteins. We have previously described the construction of poliovirus genomes (referred to as replicons) in which the complete human immunodeficiency virus type 1 (HIV-1) gag gene was substituted for the capsid gene (P1) (D.C. Porter, D.C. Ansardi, and C.D. Morrow, J. Virol. 69:1548-1555, 1995). Infection of cells with encapsidated replicons resulted in the expression of a 55-kDa protein. To further characterize the biological features of the HIV-1 Gag proteins expressed in cells infected with encapsidated replicons, we utilized biochemical analysis and electron microscopy. Expression of the 55-kDa protein in cells infected with encapsidated replicons resulted in myristylation of the Pr55gag protein. The Gag precursor protein was released from infected cells; analysis on sucrose density gradients revealed that the precursor sedimented at a density consistent with that of an HIV-1 virus-like particle. Analysis of replicon-infected cells by electron microscopy demonstrated the presence of condensed structures at the plasma membrane and the release of virus-like particles. These studies demonstrate that poliovirus-based vectors can be used to express foreign proteins which require posttranslational modifications, such as myristylation, and assemble into higher-order structures, providing a foundation for the future use of poliovirus replicons as vaccine vectors.  相似文献   

4.
Retroviral vectors have yet not been tested for their potential as vaccines despite their frequent utilization in gene therapy allowing for highly efficient gene transfer into a number of cell types and their suitability for large-scale production in biotechnology. To investigate MLV-based vectors suitability for inducing immune response against HIV-1-antigens, we generated a MLV(HIV-1) pseudotype vector enabling CD4-specific transduction of HIV-1 genes env, vpu, tat and rev originating from the pathogenic SHIV-89.6P. Functional expression of the lentiviral genes in packaging cells, human and rhesus CD4+ target cells was demonstrated by various assays. Following highly efficient ex vivo transduction, up to 3.4x10(7) autologous, transfer vector-positive rhesus peripheral blood mononuclear cells (rhPBMCs) were re-inoculated into a rhesus macaque. Five weeks after the initial inoculation HIV-1 Env-specific antibodies were detected using ELISA. ELIspot-assay revealed the induction of a HIV-1 Rev and Env-specific CTL-response 7.5 weeks after immunization. Thus, these novel MLV(HIV-1) vectors facilitate efficient transduction and subsequent expression of HIV-1-genes in CD4-positive host cells. Induction of both humoral and cellular HIV-1-specific immune responses in vivo confirmed their potential as an effective HIV-1 vaccine to be further studied in SHIV/rhesus macaque model of lentivirus infection.  相似文献   

5.
6.
Recombinant canarypox virus vectors containing human immunodeficiency virus type 1 (HIV-1) sequences are promising vaccine candidates, as they replicate poorly in human cells. However, when delivered intramuscularly the vaccines have induced inconsistent and in some cases transient antigen-specific cytotoxic T-cell (CTL) responses in seronegative volunteers. An attractive way to enhance these responses would be to target canarypox virus to professional antigen-presenting cells such as dendritic cells (DCs). We studied (i) the interaction between canarypox virus and DCs and (ii) the T-cell responses induced by DCs infected with canarypox virus vectors containing HIV-1 genes. Mature and not immature DCs resisted the cytopathic effects of canarypox virus and elicited strong effector CD8+ T-cell responses from chronically infected HIV+ individuals, e.g., cytolysis, and secretion of gamma interferon (IFN-gamma) and beta-chemokines. Furthermore, canarypox virus-infected DCs were >30-fold more efficient than monocytes and induced responses that were comparable to those induced by vaccinia virus vectors or peptides. Addition of exogenous cytokines was not necessary to elicit CD8+ effector cells, although the presence of CD4+ T cells was required for their expansion and maintenance. Most strikingly, canarypox virus-infected DCs were directly able to stimulate HIV-specific, IFN-gamma-secreting CD4 helper responses from bulk as well as purified CD4+ T cells. Therefore, these results suggest that targeting canarypox virus vectors to mature DCs could potentially elicit both anti-HIV CD8+ and CD4+ helper responses in vivo.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) vaccines that elicit protective antibody responses at mucosal sites would be highly desirable. Here, we report that intramuscular immunization of candidate HIV-1 vaccine vectors and purified Env proteins elicited potent and durable humoral immune responses in colorectal mucosa in rhesus monkeys. The kinetics, isotypes, functionality, and epitope specificity of these mucosal antibody responses were similar to those of peripheral responses in serum. These data suggest a close immunological relationship between mucosal and systemic antibody responses following vaccination in primates.  相似文献   

8.
Vpr is preferentially targeted by CTL during HIV-1 infection   总被引:11,自引:0,他引:11  
The HIV-1 accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by CTLs. However, the extent to which these proteins are targeted in natural infection, as well as precise CTL epitopes within them, remains to be defined. In this study, CTL responses against HIV-1 Vpr, Vpu, and Vif were analyzed in 60 HIV-1-infected individuals and 10 HIV-1-negative controls using overlapping peptides spanning the entire proteins. Peptide-specific IFN-gamma production was measured by ELISPOT assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8(+) T cell lines. CD8(+) T cell responses against Vpr, Vpu, and Vif were found in 45%, 2%, and 33% of HIV-1-infected individuals, respectively. Multiple CTL epitopes were identified in functionally important regions of HIV-1 Vpr and Vif. Moreover, in infected individuals in whom the breadth of HIV-1-specific responses was assessed comprehensively, Vpr and p17 were the most preferentially targeted proteins per unit length by CD8(+) T cells. These data indicate that despite the small size of these proteins Vif and Vpr are frequently targeted by CTL in natural HIV-1 infection and contribute importantly to the total HIV-1-specific CD8(+) T cell responses. These findings will be important in evaluating the specificity and breadth of immune responses during acute and chronic infection, and in the design and testing of candidate HIV vaccines.  相似文献   

9.
We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-1(89.6) Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.  相似文献   

10.
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.  相似文献   

11.
Novel viral vectors that are able to induce both strong and long-lasting immune responses may be required as effective vaccines for human immunodeficiency virus type 1 (HIV-1) infection. Our previous experiments with a replication-competent vaccine strain-based rabies virus (RV) expressing HIV-1 envelope protein from a laboratory-adapted HIV-1 strain (NL4-3) and a primary HIV-1 isolate (89.6) showed that RV-based vectors are excellent for B-cell priming. Here we report that cytotoxic T-lymphocyte (CTL) responses against HIV-1 gp160 are induced by recombinant RVs. Our results indicated that a single inoculation of mice with an RV expressing HIV-1 gp160 induced a solid and long-lasting memory CTL response specific for HIV-1 envelope protein. Moreover, CTLs from immunized mice were not restricted to the homologous HIV-1 envelope protein and were able to cross-kill target cells expressing HIV-1 gp160 from heterologous HIV-1 strains. These studies further suggest promise for RV-based vectors to elicit a persistent immune response against HIV-1 and their potential utility as efficacious anti-HIV-1 vaccines.  相似文献   

12.
Qiu JT  Liu B  Tian C  Pavlakis GN  Yu XF 《Journal of virology》2000,74(13):5997-6005
In this study, we have investigated the influence of antigen targeting after DNA vaccination upon the induction of cellular immune responses against human immunodeficiency virus type 1 (HIV-1) Gag. In addition to the standard version of HIV-1 Gag, we constructed Gag expression vectors that encode a secreted (Sc-Gag) and a cytoplasmic (Cy-Gag) Gag molecule. Although all three HIV-1 Gag expression vectors induced detectable humoral and cellular immune responses, after intramuscular injection the DNA vector encoding the Sc-Gag generated the highest primary cytotoxic T-lymphocyte (CTL) and T-helper responses. Mice immunized with one of the HIV-1 Gag DNA vectors (but not with the control vector pcDNA3. 1) developed a protective immune response against infection with recombinant vaccinia virus expressing HIV-1 Gag, and this response persisted for 125 days. The magnitude of the protection correlated with the levels of Gag-specific ex vivo CTL activity and the number of CD8(+) T cells producing gamma interferon. The DNA vector encoding the Sc-Gag induced higher levels of protection and greater secondary CTL responses than did the DNA vector encoding Cy-Gag.  相似文献   

13.
The HIV-1 regulatory proteins Tat and Rev and the accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by cytotoxic T lymphocytes. However, only limited data is available evaluating to which extent these proteins are targeted in natural infection and optimal cytotoxic T lymphocyte (CTL) epitopes within these proteins have not been defined. In this study, CTL responses against HIV-1 Tat, Rev, Vpr, Vpu, and Vif were analyzed in 70 HIV-1 infected individuals and 10 HIV-1 negative controls using overlapping peptides spanning the entire proteins. Peptide-specific interferon-gamma (IFN-gamma) production was measured by Elispot assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8+ T-cell lines. All regulatory and accessory proteins served as targets for HIV-1- specific CTL and multiple CTL epitopes were identified in functionally important regions of these proteins. In certain individuals HIV-1-specific CD8+ T-cell responses to these accessory and regulatory proteins contributed up to a third to the magnitude of the total HIV-1-specific CTL response. These data indicate that despite the small size of these proteins regulatory and accessory proteins are targeted by CTL in natural HIV-1 infection, and contribute importantly to the total HIV-1-specific CD8+ T-cell responses. These findings are relevant for the evaluation of the specificity and breadth of immune responses during acute and chronic#10; infection, and will be useful for the design and testing of candidate human immunodeficiency virus (HIV) vaccines.  相似文献   

14.
This study analyzed a heterologous prime-boost vaccine approach against HIV-1 using three different antigenically unrelated negative-stranded viruses (NSV) expressing HIV-1 Gag as vaccine vectors: rabies virus (RABV), vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV). We hypothesized that this approach would result in more robust cellular immune responses than those achieved with the use of any of the vaccines alone in a homologous prime-boost regimen. To this end, we primed BALB/c mice with each of the NSV-based vectors. Primed mice were rested for thirty-five days after which we administered a second immunization with the same or heterologous NSV-Gag viruses. The magnitude and quality of the Gag-specific CD8+ T cells in response to these vectors post boost were measured. In addition, we performed challenge experiments using vaccinia virus expressing HIV-1 Gag (VV-Gag) thirty-three days after the boost inoculation. Our results showed that the choice of the vaccine used for priming was important for the detected Gag-specific CD8+ T cell recall responses post boost and that NDV-Gag appeared to result in a more robust recall of CD8+ T cell responses independent of the prime vaccine used. However, the different prime-boost strategies were not distinct for the parameters studied in the challenge experiments using VV-Gag but did indicate some benefits compared to single immunizations. Taken together, our data show that NSV vectors can individually stimulate HIV-Gag specific CD8+ T cells that are effectively recalled by other NSV vectors in a heterologous prime-boost approach. These results provide evidence that RABV, VSV and NDV can be used in combination to develop vaccines needing prime-boost regimens to stimulate effective immune responses.  相似文献   

15.
The human immunodeficiency virus type I (HIV-1) accessory protein Vpr has been associated with the induction of programmed cell death (apoptosis) and cell-cycle arrest. Studies have shown the apoptotic effect of Vpr on primary and established cell lines and on diverse tissues including the central nervous system (CNS) in vitro. However, the relevance of the effect of Vpr observed in vitro to HIV-1 neuropathogenesis in vivo, remains unknown. Due to the narrow host range of HIV-1 infection, no animal model is currently available. This has prompted us to consider a small animal model to evaluate the effects of Vpr on CNS in vivo through surrogate viruses expressing HIV-1Vpr. A single round of replication competent viral vectors, expressing Vpr, were used to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo. Viral particles pseudotyped with VSV-G or N2c envelopes were generated from spleen necrosis virus (SNV) and HIV-1-based vectors to transduce CNS cells. The in vitro studies have demonstrated that Vpr generated by SNV vectors had less apoptotic effects on CNS cells compared with Vpr expressed by HIV-1 vectors. The in vivo study has suggested that viral particles, expressing Vpr generated by HIV-1-based vectors, when delivered through the ventricle, caused loss of neurons and dendritic processes in the cortical region. The apoptotic effect was extended beyond the cortical region and affected the hippocampus neurons, the lining of the choroids plexus, and the cerebellum. However, the effect of Vpr, when delivered through the cortex, showed neuronal damage only around the site of injection. Interestingly, the number of apoptotic neurons were significantly higher with HIV-1 vectors expressing Vpr than by the SNV vectors. This may be due to the differences in the proteins expressed by these viral vectors. These results suggest that Vpr induces apoptosis in CNS cells in vitro and in vivo. To our knowledge, this is the first study to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo in neonatal mice. We propose that this, in expensive animal model, may be of value to design-targeted neuroprotective therapeutics.  相似文献   

16.
The HIV-1 Gag protein is an attractive target for CTL-based vaccine strategies because it shows less sequence variability than other HIV-1 proteins. In an attempt to increase the immunogenicity of HIV-1 Gag, we created Gag variants that were targeted to the proteasomal pathway for rapid degradation. This enhanced rate of degradation was associated with increased presentation of MHC class I-associated antigenic peptides on the cell surface. Despite this, immunizing mice with either plasmid DNA or recombinant vaccinia vectors expressing unstable Gag failed to produce significant increases in bulk CTL responses or Ag-specific production of IFN-gamma by CD8(+) T cells compared with mice immunized with stable forms of Gag. Production of IFN-gamma by CD4(+) T cells was also impaired, and we speculate that the abrogation of CD4(+) T cell help was responsible for the impaired CTL response. These results suggest that vaccine strategies designed to increase the density of peptide-MHC class I complexes on the surfaces of APC may not necessarily enhance immunogenicity with respect to CTL responses.  相似文献   

17.
We investigated long-term memory and recall cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (VSVs) expressing Env and Gag. More than 7 months after a single vaccination with VSV-Env, approximately 6% of CD8(+) splenocytes stained with major histocompatibility complex class I tetramers containing the Env p18-I10 immunodominant peptide and showed a memory phenotype (CD44(Hi)). The level of tetramer-positive cells in memory was about 14% of the peak primary response. Recall responses elicited in these mice 5 days after boosting with a heterologous recombinant vaccinia virus expressing HIV-1 Env showed that 40 to 45% of CD8(+) splenocytes were tetramer positive and activated (CD62L(Lo)), and these cells produced gamma interferon after stimulation with Env peptide, indicating that they were functional. Five months after the boost, the long-term memory cell population (tetramer positive, CD44(Hi)) constituted 30% of the CD8(+) splenocytes. Recall responses to HIV-1 Gag were examined in mice primed with VSV recombinants expressing HIV-1 Gag protein and boosted with a vaccinia virus recombinant expressing Gag. Using this protocol, we found that approximately 40% of CD8(+) splenocytes were activated (CD62L(Lo)) and specific for a Gag immunodominant peptide (tetramer positive). The high-level Gag recall response elicited by the vaccinia virus-Gag was greater than that obtained by boosting with a VSV-Gag vector with a different VSV glycoprotein. The corresponding levels of CD44(Hi) memory cells were also higher long after boosting with vaccinia virus-Gag than after boosting with a glycoprotein exchange VSV-Gag. Our results show that VSV vectors elicit high-level memory CTL responses and that these can be amplified as much as six- to sevenfold using a heterologous boosting vector.  相似文献   

18.
Continuous high-titer HIV-1 vector production   总被引:14,自引:0,他引:14  
Human immunodeficiency virus type 1 (HIV-1)-based vectors are currently made by transient transfection, or using packaging cell lines in which expression of HIV-1 Gag and Pol proteins is induced. Continuous vector production by cells in which HIV-1 Gag-Pol is stably expressed would allow rapid and reproducible generation of large vector batches. However, attempts to make stable HIV-1 packaging cells by transfection of plasmids encoding HIV-1 Gag-Pol have resulted in cells which secrete only low levels of p24 antigen (20-80 ng/ml), possibly because of the cytotoxicity of HIV-1 protease. Infection of cells with HIV-1 can result in stable virus production; cell clones that produce up to 1,000 ng/ml secreted p24 antigen have been described. Here we report that expression of HIV-1 Gag-Pol by a murine leukemia virus (MLV) vector allows constitutive, long-term, high-level (up to 850 ng/ml p24) expression of HIV-1 Gag. Stable packaging cells were constructed using codon-optimized HIV-1 Gag-Pol and envelope proteins of gammaretroviruses; these producer cells could make up to 10(7) 293T infectious units (i.u.)/ml (20 293T i.u./cell/day) for at least three months in culture.  相似文献   

19.
20.
Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号