首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poliovirus RNA-dependent RNA polymerase (3Dpol) contains a region of homology centered around the amino acid motif YGDD (amino acids 326 to 329), which has been postulated to be involved in the catalytic activity of the enzyme. Previous studies from this laboratory have used oligonucleotide site-directed mutagenesis to substitute the tyrosine amino acid at this motif with other amino acids (S. A. Jablonski and C. D. Morrow, J. Virol. 67:373-381, 1993). The viruses recovered with 3Dpol genes with a methionine mutation also contained a second mutation at amino acid 108 resulting in a glutamic acid-to-aspartic acid change (3D-E-108 to 3D-D-108) in the poliovirus RNA polymerase. On the basis of these results, we suggested that the amino acid at position 108 might interact with the YGDD region of the poliovirus polymerase. To further investigate this possibility, we have constructed a series of constructs in which the poliovirus RNA polymerases contained a mutation at amino acid 108 (3D-E-108 to 3D-D-108) as well as a mutation in which the tyrosine amino acid (3D-Y-326) was substituted with cysteine (3D-C-326) or serine (3D-S-326). The mutant 3Dpol polymerases were expressed in Escherichia coli, and in vitro enzyme activity was analyzed. Enzymes containing the 3D-D-108 mutation with the wild-type amino acid (3D-Y-326) demonstrated in vitro enzyme activity similar to that of the wild-type enzyme containing 3D-E-108. In contrast, enzymes with the 3D-C-326 or 3D-S-326 mutation had less in vitro activity than the wild type. The inclusion of the second mutation at amino acid 3D-D-108 did not significantly affect the in vitro activity of the polymerases containing 3D-C-326 or 3D-S-326 mutation. Transfections of poliovirus cDNAs containing the substitution at amino acid 326 with or without the second mutation at amino acid 108 were performed. Consistent with previous findings, we found that transfection of poliovirus cDNAs containing the 3D-C-326 or 3D-S-326 mutation in 3Dpol did not result in the production of virus. Surprisingly, transfection of the poliovirus cDNAs containing the 3D-D-108/C-326 double mutation, but not the 3D-D-108/S-326 mutation, resulted in the production of virus. The virus obtained from transfection of polio-virus cDNAs containing 3D-D-108/C-326 mutation replicated with kinetics similar to that of the wild-type virus. RNA sequence analysis of the region of the 3Dpol containing the 3D-C-326 mutation revealed that the codon for cysteine (UGC) reverted to the codon for tyrosine (UAC). The results of these studies establish that under the appropriate conditions, poliovirus has the capacity to revert mutations within the YGDD amino acid motif of the poliovirus 3Dpol gene and further strengthen the idea that interaction between amino acid 108 and the YGDD region of 3Dpol is required for viral replication.  相似文献   

2.
The poliovirus RNA-dependent RNA polymerase (3Dpol) shares a region of homology with all RNA polymerases, centered around the amino acid motif YGDD, which has been postulated to be involved in the catalytic activity of the enzyme. Using oligonucleotide site-directed mutagenesis, we substituted the tyrosine at this motif of the poliovirus RNA-dependent RNA polymerase with cysteine, histidine, isoleucine, methionine, phenylalanine, or serine. The enzymes were expressed in Escherichia coli, and in vitro enzyme activity was tested. The phenylalanine and methionine substitutions resulted in enzymes with activity equal to that of the wild-type enzyme. The cysteine substitution resulted in an enzyme with approximately 50% of the wild-type activity, while the serine substitution resulted in an enzyme with approximately 10% of the wild-type activity; the isoleucine and histidine substitutions resulted in background levels of enzyme activity. To assess the effects of the mutants in viral replication, the mutant polymerase genes were subcloned into the infectious cDNA clone of poliovirus. Transfection of poliovirus cDNA containing the phenylalanine mutation in 3Dpol gave rise to virus in all of the transfection trials, while cDNA containing the methionine mutation resulted in virus in only 3 of 40 transfections. Transfection of cDNAs containing the other substitutions at the tyrosine residue did not result in infectious virus. The recovered viruses demonstrated kinetics of replication similar to those of the wild-type virus, as measured by [3H]uridine incorporation at either 37 or 39 degrees C. RNA sequence analysis of the 3Dpol gene of both viruses demonstrated that the tyrosine-to-phenylalanine or tyrosine-to-methionine mutation was still present. No other differences in the 3Dpol gene between the wild-type and phenylalanine-containing virus were found. The virus containing the methionine mutation also contained two other nucleotide changes from the wild-type 3Dpol sequence; one resulted in a glutamic acid-to-aspartic acid change at amino acid 108 of the polymerase, and the other resulted in a C-to-T base change at nucleotide 6724, which did not result in an amino acid change. To confirm that the second amino acid mutation found in the 3Dpol gene of the methionine-substituted virus allowed for replication ability, a mutation corresponding to the glutamic acid-to-aspartic acid change was made in the polymerase containing the methionine substitution, and this double-mutant polymerase was expressed in E. coli. The double-mutant enzyme was as active as the wild-type enzyme under in vitro assay conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A series of short insertion mutations was introduced into the poliovirus gene for 3Dpol at a number of different locations. When substituted for wild-type sequences in a full-length, infectious cDNA and tested for infectivity, all 3D mutants were nonviable. The mutant cDNAs were introduced into a bacterial plasmid designed to direct the expression of poliovirus 3CD, a viral protein composed of contiguous protease and RNA polymerase sequences. Bacteria transformed with these plasmids all expressed similar amounts of 3CD, and all mutant proteins cleaved themselves to generate wild-type 3Cpro and mutant 3Dpol polypeptides with approximately the same efficiency as wild-type 3CD. The released mutant 3Dpol proteins were all defective in RNA-dependent RNA polymerase activity in vitro. Uncleaved 3CD is a protease required for processing the viral capsid protein precursor, P1. In an in vitro assay of P1 cleavage activity, some of the mutant 3CD proteins expressed in Escherichia coli showed normal activity, while others were clearly inactive. Thus, alterations in the sequence and/or folding of different regions of the 3D protein have differential effects on its various activities.  相似文献   

4.
A cDNA clone encoding the 3CD proteinase (3CDpro) of poliovirus type 2 (Sabin), the precursor to proteinase 3Cpro and RNA polymerase 3Dpol, was expressed in bacteria by using a T7 expression system. Site-specific mutagenesis of the 3C/3D cleavage site was performed to generate active proteolytic precursors impaired in their ability to process themselves to 3Cpro and 3Dpol. Of these mutations, the exchange of the Thr residue at the P4 position of the 3C/3D cleavage site for a Lys residue (3CDpro T181K) resulted in a mutant polypeptide exhibiting the smallest amount of autoprocessing. This mutant was purified to 86% homogeneity and used for subsequent proteolytic studies. Purified 3CDproM (M designates the cleavage site mutant 3CDpro T181K) was capable of cleaving the P1 capsid precursor, a peptide representing the 2BC cleavage site, and the 2BC precursor polypeptide. Purified 3CDproM demonstrated the same detergent sensitivity in processing experiments with the capsid precursor as was observed by using P1 and crude extracts of poliovirus-infected HeLa cell lysates. Purified 3CDproM did not have any detectable RNA polymerase activity, whereas 3Dpol, separated from 3CDproM by gel filtration in the last step of purification, did. We conclude that 3CDproM can process both structural and nonstructural precursors of the poliovirus polyprotein and that it is active against a synthetic peptide substrate. Moreover, cleavage of 3CD to 3Dpol is needed to activate the 3D RNA polymerase.  相似文献   

5.
The RNA-dependent RNA polymerase from rabbit hemorrhagic disease virus, a calicivirus, is known to have a conserved GDD amino acid motif and several additional regions of sequence homology with all types of polymerases. To test whether both aspartic acid residues are in fact involved in the catalytic activity and metal ion coordination of the enzyme, several defined mutations have been made in order to replace them by glutamate, asparagine, or glycine. All six mutant enzymes were produced in Escherichia coli, and their in vitro poly(U) polymerase activity was characterized. The results demonstrated that the first aspartate residue was absolutely required for enzyme function and that some flexibility existed with respect to the second, which could be replaced by glutamate.  相似文献   

6.
Rifampin-resistant (Rifr) mutants were isolated spontaneously from Bacillus subtilis strain 168. A fraction of the mutants did not grow on a minimal medium. A high concentration of one of the L-amino acids (glutamic acid, glutamine, arginine, proline, aspartic acid, or asparagine) was required to restore their growth on the medium. Further analysis of one of the mutants (strain RF 161) suggested that the mutant is unable to use ammonia as a nitrogen source and requires amino acids instead. Activity of glutamate synthase was not detected in the crude extract of the mutant. The Rifr mutation was closely located to cysA and the drug resistance was cotransformed with the property of amino acid requirement at 100% frequency. All revertants to prototrophy tested showed the rifampin-sensitive (Rifs) property. The activity of the DNA-dependent RNA polymerase of the mutant was resistant to rifampin. It is concluded that some alteration of RNA polymerase may cause absence of the activity of an enzyme involved in the nitrogen metabolism.  相似文献   

7.
The primary oligomerization domain of poliovirus polymerase, 3Dpol, is stabilized by the interaction of the back of the thumb subdomain of one molecule with the back of the palm subdomain of a second molecule, thus permitting the head-to-tail assembly of 3Dpol monomers into long fibers. The interaction of Arg-455 and Arg-456 of the thumb with Asp-339, Ser-341, and Asp-349 of the palm is key to the stability of this interface. We show that mutations predicted to completely disrupt this interface do not produce equivalent growth phenotypes. Virus encoding a polymerase with changes of both residues of the thumb to alanine is not viable; however, virus encoding a polymerase with changes of all three residues of the palm to alanine is viable. Biochemical analysis of 3Dpol derivatives containing the thumb or palm substitutions revealed that these derivatives are both incapable of forming long fibers, suggesting that polymerase fibers are not essential for virus viability. The RNA binding activity, polymerase activity, and thermal stability of these derivatives were equivalent to that of the wild-type enzyme. The two significant differences observed for the thumb mutant were a modest reduction in the ability of the altered 3CD proteinase to process the VP0/VP3 capsid precursor and a substantial reduction in the ability of the altered 3Dpol to catalyze oriI-templated uridylylation of VPg. The defect to uridylylation was a result of the inability of 3CD to stimulate this reaction. Because 3C alone can substitute for 3CD in this reaction, we conclude that the lethal replication phenotype associated with the thumb mutant is caused, in part, by the disruption of an interaction between the back of the thumb of 3Dpol and some undefined domain of 3C. We speculate that this interaction may also be critical for assembly of other complexes required for poliovirus genome replication.  相似文献   

8.
A mutant poliovirus (PV) encoding a change in its polymerase (3Dpol) at a site remote from the catalytic center (G64S) confers reduced sensitivity to ribavirin and forms a restricted quasispecies, because G64S 3Dpol is a high-fidelity enzyme. A foot-and-mouth disease virus (FMDV) mutant that encodes a change in the polymerase catalytic site (M296I) exhibits reduced sensitivity to ribavirin without restricting the viral quasispecies. In order to resolve this apparent paradox, we have established a minimal kinetic mechanism for nucleotide addition by wild-type (WT) FMDV 3Dpol that permits a direct comparison to PV 3Dpol as well as to FMDV 3Dpol derivatives. Rate constants for correct nucleotide addition were on par with those of PV 3Dpol, but apparent binding constants for correct nucleotides were higher than those observed for PV 3Dpol. The A-to-G transition frequency was calculated to be 1/20,000, which is quite similar to that calculated for PV 3Dpol. The analysis of FMDV M296I 3Dpol revealed a decrease in the calculated ribavirin incorporation frequency (1/8,000) relative to that (1/4,000) observed for the WT enzyme. Unexpectedly, the A-to-G transition frequency was higher (1/8,000) than that observed for the WT enzyme. Therefore, FMDV selected a polymerase that increases the frequency of the misincorporation of natural nucleotides while specifically decreasing the frequency of the incorporation of ribavirin nucleotide. These studies provide a mechanistic framework for understanding FMDV 3Dpol structure-function relationships, provide the first direct analysis of the fidelity of FMDV 3Dpol in vitro, identify the β9-α11 loop as a (in)fidelity determinant, and demonstrate that not all ribavirin-resistant mutants will encode high-fidelity polymerases.  相似文献   

9.
Picornaviruses have a peptide termed VPg covalently linked to the 5'-end of the genome. Attachment of VPg to the genome occurs in at least two steps. First, Tyr-3 of VPg, or some precursor thereof, is used as a primer by the viral RNA-dependent RNA polymerase, 3Dpol, to produce VPg-pUpU. Second, VPg-pUpU is used as a primer to produce full-length genomic RNA. Production of VPg-pUpU is templated by a single adenylate residue located in the loop of an RNA stem-loop structure termed oriI by using a slide-back mechanism. Recruitment of 3Dpol to and its stability on oriI have been suggested to require an interaction between the back of the thumb subdomain of 3Dpol and an undefined region of the 3C domain of viral protein 3CD. We have performed surface acidic-to-alanine-scanning mutagenesis of 3C to identify the surface of 3C with which 3Dpol interacts. This analysis identified numerous viable poliovirus mutants with reduced growth kinetics that correlated to reduced kinetics of RNA synthesis that was attributable to a change in VPg-pUpU production. Importantly, these 3C derivatives were all capable of binding to oriI as well as wild-type 3C. Synthetic lethality was observed for these mutants when placed in the context of a poliovirus mutant containing 3Dpol-R455A, a residue on the back of the thumb required for VPg uridylylation. These data were used to guide molecular docking of the structures for a poliovirus 3C dimer and 3Dpol, leading to a structural model for the 3C(2)-3Dpol complex that extrapolates well to all picornaviruses.  相似文献   

10.
The cDNA encoding Taka-amylase A (EC.3.2.1.1, TAA) was isolated to identify functional amino acid residues of TAA by protein engineering. The putative catalytic active-site residues and the substrate binding residue of TAA were altered by site-directed mutagenesis: aspartic acid-206, glutamic acid-230, aspartic acid-297, and lysine-209 were replaced with asparagine or glutamic acid, glutamine or aspartic acid, asparagine or glutamic acid, and phenylalanine or arginine, respectively. Saccharomyces cerevisiae strain YPH 250 was transformed with the expression plasmids containing the altered cDNA of the TAA gene. All the transformants with an expression vector containing the altered cDNA produced mutant TAAs that cross-reacted with the TAA antibody. The mutant TAA with alteration of Asp206, Glu230, or Asp297 in the putative catalytic site had no alpha-amylase activity, while that with alteration of Lys209 in the putative binding site to Arg or Phe had reduced activity.  相似文献   

11.
The effects of various amino acids on growth and heterocyst differentiation have been studied on wild type and a heterocystous, non-nitrogen-fixing (het+ nif-) mutant of Anabaena doliolum. Glutamine, arginine and asparagine showed maximum stimulation of growth. Serine, proline and alanine elicited slight stimulation of growth of wild type but failed to show any stimulatory effect on mutant strain. Valine, glutamic acid, iso-leucine and leucine at a concentration of as low as 0.1 mM were inhibitory to growth of parent type. Methionine, aspartic acid, threonine, cysteine, and tryptophan did not affect growth at concentrations lower than 0.5 mM. But at 1 mM, these amino acids were inhibitory. In addition to the stimulatory effects of glutamine, arginine and asparagine, the heterocyst frequency was also repressed by these amino acids. Glutamine and arginine at 2 mM completely repressed heterocyst differentiation in the mutant strain; however, other amino acids failed to repress the differentiation of heterocysts. Our results suggest that glutamine and arginine are utilized as nitrogen sources. This is strongly supported from the data of growth and heterocyst differentiation of mutant strain, where at least with glutamine there is good growth without heterocyst formation. Studies with glutamine and arginine on other N2-fixing blue-green algae may reveal the regulation of the heterocyst-nitrogenase sub-system.  相似文献   

12.
The general control of amino acid biosynthesis was investigated in Candida spec. EH 15/D, using single and double mutant auxotrophic strains and prototrophic revertants starved for their required amino acids. These experiments show that starvation for lysine, histidine, arginine, leucine, threonine, proline, serine, methionine, homoserine, asparagine, glutamic acid or aspartic acid can result in derepression of enzymes. A correlation was found between the degree of derepression, growth of strains, and concentration of required amino acids. The amino acids pool pattern of mutants and revertants is different from that in the wild type strain.  相似文献   

13.
The biosynthesis of iturin, an antibiotic containing a beta-amino fatty acid, was studied by incubating Bacillus subtilis in the presence of various 14C-labelled precursors. Sodium acetate or palmitic acid were incorporated into the beta-amino acids of iturin. Among the alpha-amino acids (asparagine, glutamine, serine, proline and tyrosine) in the peptidic part of iturin, asparagine appears to be the best precursor. In the presence of sodium [14C]acetate or [14C]asparagine, there was a synthesis of radioactive compound (compound X) before the synthesis of radioactive iturin. Compound X contained asparagine and/or aspartic acid, glutamine and/or glutamic acid and beta-hydroxy fatty acids.  相似文献   

14.
The present work deals with the effect of six amino acids: asparagine,aspartic acid, glutamic acid, glycine, serine, and tryptophan,on growth and gametangial formation in Riccia gangetica. Allthe amino acids tested enhance vegetative growth, and amongthese glutamic acid proves best. The total number of rhizoidsis reduced in response to amino acids. Aspartic acid and glutamicacid favour antheridial production. In contrast, asparagine,serine, and tryptophan enhance archegonial formation, and amongthese asparagine elicits the best response. Glycine proves bestfor antheridial production, and also increases the number ofarchegonia. Key words: Riccia gangetica, Amino acids, Growth, Gametangial formation  相似文献   

15.
Abstract

Qualitative and quantitative analysis of free and bound amino acids and amides during dormancy and the most important phases of the first cell cycle was carried out in tubers of Helianthus tuberosus.

In the dormant tuber arginine was confirmed to be the most abundant amino acid. A high amount of asparagine was also present; on the contrary glutamine was found in very low concentrations. During the progression of dormancy, all the free amino acids and amides declined while aspartic and glutamic acid increased.

During the G1 phase of the first cell cycle induced by 2,4-D, all the free amino acids and amides decreased with the exception of glutamic acid.

At 18, 20, 24 h of activation with 2,4-D, corresponding to the S phase and the beginning of mitosis, bound amino acids were also determined. In these phases of the cell cycle they increased reaching a maximum at 20 h; on the other hand the free amino acid and amide content, especially aspartic acid, asparagine and arginine, decreased with the exception of glutamic acid, alanine and phenylalanine.  相似文献   

16.
The active RNA-dependent RNA polymerase of poliovirus, 3Dpol, is generated by cleavage of the 3CDpro precursor protein, a protease that has no polymerase activity despite containing the entire polymerase domain. By intentionally disrupting a known and persistent crystal packing interaction, we have crystallized the poliovirus polymerase in a new space group and solved the complete structure of the protein at 2.0 A resolution. It shows that the N-terminus of fully processed 3Dpol is buried in a surface pocket where it makes hydrogen bonds that act to position Asp238 in the active site. Asp238 is an essential residue that selects for the 2' OH group of substrate rNTPs, as shown by a 2.35 A structure of a 3Dpol-GTP complex. Mutational, biochemical, and structural data further demonstrate that 3Dpol activity is exquisitely sensitive to mutations at the N-terminus. This sensitivity is the result of allosteric effects where the structure around the buried N-terminus directly affects the positioning of Asp238 in the active site.  相似文献   

17.
An evolutionary scheme is postulated in which a primitive code, involving only guanine and cytosine, would code for glycine (GG), alanine (GC), arginine (CG) and proline (CC). From each of these amino acids and their codons, there evolves a family of related amino acids as the code expands. The four families are: (1)alanine valine, leucine, isoleucine, phenylalanine, tyrosine, methionine and tryptophane; (2)proline, threonine and serine; (3)arginine, lysine, and histidine; (4)glycine, serine, cysteine, glutamic acid, glutamine, aspartic acid and asparagine. Except for the glycine relation to glutamic acid and aspartic acid, all amino acids are related by chemical similarities in their side chains. Glycine not having a side chain would permit a more complex set of substitutions.  相似文献   

18.
19.
The pH profile for the uptake of L-glutamic acid by the Ehrlich ascites tumor cell arises largely as a sum of the decline with falling pH of a slow, Na+-dependent uptake by System A, and an increasing uptake by Na+-independent System L. The latter maximizes at about pH 4.5, following approximately the titration curve of the distal carboxyl group. This shift in route of uptake was verified by (a) a declining Na+-dependent component, (b) an almost corresponding decline in the 2-(methylamino)-isobutyric acid-inhibitable component, (c) a rising component inhibited by 2-aminonorbornane-2-carboxylic acid. Other amino acids recognized as principally reactive with Systems A or L yielded corresponding inhibitory effects with some conspicious exceptions: 2-Aminoisobutyric acid and even glycine become better substrates of System L as the pH is lowered; hence their inhibitory action on glutamic acid uptake is not lost. The above results were characterized by generally consistent relations among the half-saturation concentrations of the interacting amino acids with respect to: their own uptake, their inhibition of the uptake, one by another, and their trans stimulation of exodus, one by another. A small Na+-dependent component of uptake retained by L-glutamic acid but not by D-glutamic acid at pH 4.5 is inhibitable by methionine but by neither 2-(methylamino)-isobutyric acid nor the norbornane amino acid. We provisionally identified this component with System ASC, which transports L-glutamine throughout the pH range studied. No transport activity specific to the anionic amino acids was detected, and the unequivocally anionic cysteic acid showed neither significant mediated uptake nor inhibition of the uptake of glutamic aic or of the norbornane amino acid. The dicarboxylic amino acids take the sequence, aspartic acid less than glutamic acid less than alpha-aminoadipic acid less than S-carboxymethylcysteine, in their rate of mediated, Na+-independent uptake at low pH. Diiodotyrosine and two dissimilas isomers of nitrotyrosine also show acceleration of uptake as the phenolate group on the sidechain is protonated, a result indicating that the acidic group need not be a carboxyl group and need not take a specific position in space to be accepted at the receptor site L. The presence of the carboxyl group does not upset the normal stereospecificity of System L until it falls on the beta-carbon in aspartic acid; even then it is the presence of the carbonyl group and not of the intact carboxyl group nor of its hydroxyl group that cancels out the stereospecificity, as was shown by the absence of normal stereospecificity for aspartic acid and asparagine and its presence in glutamic acid, homoserine and glutamine. In agreement, the uptak of aspartic acid is peculiarly sensitive to the presence of an alpha-methyl group or of other structures that modify the orientation of the sidechain.  相似文献   

20.
Studies of the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV), 3Dpol, have shown that Asn-297 permits this enzyme to distinguish ribose from 2'-deoxyribose. All animal RNA viruses have Asn at the structurally homologous position of their polymerases, suggesting a conserved function for this residue. However, all prokaryotic RNA viruses have Glu at this position. In the presence of Mg2+, the apparent affinity of Glu-297 3Dpol for 2'-deoxyribonucleotides was decreased by 6-fold relative to wild type without a substantial difference in the fidelity of 2'-dNMP incorporation. The fidelity of ribonucleotide misincorporation for Glu-297 3Dpol was reduced by 14-fold relative to wild type. A 4- to 11-fold reduction in the rate of ribonucleotide incorporation was observed. Glu-297 PV was unable to grow in HeLa cells due to a replication defect equivalent to that observed for a mutant PV encoding an inactive polymerase. Evaluation of the protein-(VPg)-primed initiation reaction showed that only half of the Glu-297 3Dpol initiation complexes were capable of producing VPg-pUpU product and that the overall yield of uridylylated VPg products was reduced by 20-fold relative to wild-type enzyme, a circumstance attributable to a reduced affinity for UTP. These studies identify the first RdRp derivative with a mutator phenotype and provide a mechanistic basis for the elevated mutation frequency of RNA phage relative to animal RNA viruses observed in culture. Although protein-primed initiation and RNA-primed elongation complexes employ the same polymerase active site, the functional differences reported here imply significant structural differences between these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号