首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

We carried out field experiments to investigate if an agricultural grassland mixture comprising shallow- (perennial ryegrass: Lolium perenne L.; white clover: Trifolium repens L.) and deep- (chicory: Cichorium intybus L.; Lucerne: Medicago sativa L.) rooting grassland species has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access.

Methods

15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N-access of pure stands, two-species and four-species grassland communities.

Results

Herbage yield and soil 15N-access of the mixture including deep- and shallow-rooting grassland species were generally greater than the pure stands and the two-species mixture, except for herbage yield in pure stand lucerne. This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture relatively large amounts of shallow soil 15N. Legumes fixed large amounts of N2, added and spared N for non-leguminous plants, which especially stimulated the growth of perennial ryegrass.

Conclusions

Our study showed that increased plant diversity in agricultural grasslands can have positive effects on the environment (improved N use may lead to reduced N leaching) and agricultural production (increased herbage yield). A complementary effect between legumes and non-leguminous plants and increasing plant diversity had a greater positive impact on herbage yield compared with complementary vertical soil 15N-access.  相似文献   

2.

Background and Aims

Below-ground translocated carbon (C) released as rhizodeposits is an important driver for microbial mobilization of nitrogen (N) for plants. We investigated how a limited substrate supply due to reduced photoassimilation alters the allocation of recently assimilated C in plant and soil pools under legume and non-legume species.

Methods

A non-legume (Lolium perenne) and a legume (Medicago sativa) were labelled with 15N before the plants were clipped or shaded, and labelled twice with 13CO2 thereafter. Ten days after clipping and shading, the 15N and 13C in shoots, roots, soil, dissolved organic nitrogen (DON) and carbon (DOC) and in microbial biomass, as well as the 13C in soil CO2 were analyzed.

Results

After clipping, about 50 % more 13C was allocated to regrowing shoots, resulting in a lower translocation to roots compared to the unclipped control. Clipping also reduced the total soil CO2 efflux under both species and the 13C recovery of soil CO2 under L. perenne. The 15N recovery increased in the shoots of M. sativa after clipping, because storage compounds were remobilized from the roots and/or the N uptake from the soil increased. After shading, the assimilated 13C was preferentially retained in the shoots of both species. This caused a decreased 13C recovery in the roots of M. sativa. Similarly, the total soil CO2 efflux under M. sativa decreased more than 50 % after shading. The 15N recovery in plant and soil pools showed that shading has no effect on the N uptake and N remobilization for L. perenne, but, the 15N recovery increased in the shoot of M. sativa.

Conclusions

The experiment showed that the dominating effect on C and N allocation after clipping is the need of C and N for shoot regrowth, whereas the dominating effect after shading is the reduced substrate supply for growth and respiration. Only slight differences could be observed between L. perenne and M. sativa in the C and N distribution after clipping or shading.  相似文献   

3.

Aims

Litter, as afterlife of plants, plays an important role in driving belowground decomposition processes. Here we tested effects of litter species identity and diversity on carbon (C) and nitrogen (N) dynamics during litter decomposition in N-limited alpine meadow soil from the Qinghai–Tibet Plateau.

Methods

We incubated litters of four meadow species, a sedge (“S”, Kobresia humilis), a grass (“G”, Elymus nutans), a herb (“H”, Saussurea superba), and a legume (“L”, Oxytropis falcata), in monoculture and in mixture with meadow soil. CO2 release was measured 21 times during the incubation, and soil available N and microbial biomass C and N were measured before and after the experiment.

Results

The organic C decay rate did not differ much among soils amended with monocultures or mixtures of litter, except in the H, S, L, and S+H treatments, which had much higher decay rates. Potential decomposable C pools were lowest in the control, highest in the L treatment, and intermediate in the S treatment. Mineralized N was completely immobilized by soil microbes in all treatments except the control, S+L, and S+G+L treatments. Litter mixtures had both additive and non-additive effects on CO2-C emission (mainly antagonistic effects), net N mineralization (mainly synergistic), and microbial biomass C and N (both). Overall, these parameters were not significantly correlated with litter species richness. Similarly, microbial C or N was not significantly correlated with litter N content or C/N. However, cumulative CO2-C emission and net N mineralization were positively correlated with litter N content and negatively correlated with litter C/N.

Conclusions

Litter N content and C/N rather than litter species richness drove the release of CO2-C and net available N in this ecosystem. The antagonistic effects of litter mixtures contributed to a modest release of CO2-C, but their synergistic effects enhanced net available N. We suggest that in alpine meadow communities, balancing species with high and low N contents will benefit soil carbon sequestration and plant competition for available N with soil microbes.  相似文献   

4.

Background and aims

Physical and chemical soil properties determine local plant conditions and resources, affecting plants’ ability to respond to disturbances. In alpine grasslands, wild boar disturbances occur at different intensities, what may affect differently their soil properties. Alpine soils from five contrasted plant communities were explored within and outside disturbances, accounting for an overall and community scale effect. Additionally, we analysed the effect of disturbance intensity on soil NO3 --N and NH4 +-N.

Methods

Soils were analyzed for physical (bulk density, moisture content and electrical conductivity), and chemical properties (pH, total N and C, oxidizable C, C:N ratio, available K, P, Ca2+, Na+ and Mg2+). Resin bags were used to compare the effect of the disturbance occurrence and intensity on soil NO3 --N and NH4 +-N.

Results

Bulk density, total N and NO3 --N concentration were significantly higher in disturbed areas, while soil moisture, C:N, NH4 +-N, Na+, Mg2+ and Ca2+ concentrations were significantly lower. However, low disturbance intensity reduced NO3 --N and increased NH4 +-N concentrations.

Conclusions

Wild boar occurrence and intensity strongly alter physical and chemical conditions of alpine soils, increasing soil compaction, and altering the availability of N forms. These changes may affect most plant species, thus affecting the structure and dynamics of alpine plant communities.  相似文献   

5.

Aims

To assess the effects of atmospheric N deposition on the C budget of an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, it is necessary to explore the responses of soil-atmosphere carbon dioxide (CO2) exchange to N addition.

Methods

Based on a multi-form, low-level N addition experiment, soil CO2 effluxes were monitored weekly using the static chamber and gas chromatograph technique. Soil variables and aboveground biomass were measured monthly to examine the key driving factors of soil CO2 efflux.

Results

The results showed that low-level N input tended to decrease soil moisture, whereas medium-level N input maintained soil moisture. Three-year N additions slightly increased soil inorganic N pools, especially the soil NH 4 + -N pool. N applications significantly increased aboveground biomass and soil CO2 efflux; moreover, this effect was more significant from NH 4 + -N than from NO 3 ? -N fertilizer. In addition, the soil CO2 efflux was mainly driven by soil temperature, followed by aboveground biomass and NH 4 + -N pool.

Conclusions

These results suggest that chronic atmospheric N deposition will stimulate soil CO2 efflux in the alpine meadow on the Qinghai–Tibetan Plateau by increasing available N content and promoting plant growth.  相似文献   

6.

Background and aims

To test the hypothesis that dominant plant species could acquire different nitrogen (N) forms over a spatial scale and they also have the ability to compete for available N with microbes.

Methods

A short-term 15N labeling experiment was conducted in the temperate grassland ecosystem of North China in July of 2013. Three N forms (NO3 ? , NH4 + and glycine) labeled with 15N were injected into the two soil depths (0–5 and 5–15 cm) surrounding each plant to explore N acquisition by plants and microbes. Three dominant plant species (Artemisia frigida, Cleistogenes squarrosa and Artemisia capillaris) were investigated.

Results

Two hours after 15N labeling, all three dominant plant species absorbed both organic and inorganic N, but different patterns were observed at two soil depths. Uptake of NO3 ? was significantly higher at 0–5 cm than at 5–15 cm soil depth among all the dominant plant species. 15N recovery by microbes was significantly higher than plants. However, 15N recovery by plants showed different patterns over soil depths.

Conclusions

Dominant plant species in the temperate grassland have different patterns in acquisition of N added to soil in organic form and absorption of inorganic N, and microbes were more effectively than plants at competing for N in a short-term period.
  相似文献   

7.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

8.

Background and aims

The warming of the planet in recent decades has caused rapid, widespread permafrost degradation on the Qinghai–Tibet Plateau. These changes may significantly affect soil moisture content and nutrient supply, thereby affecting ecosystem structure and function. This study aimed to describe the dynamic changes in thaw depth, assess the relationship between thaw depth and soil moisture content, and analyze the changes in species composition and water-use efficiency in response to permafrost degradation.

Methods

We surveyed species composition, thaw depth, ground temperature, soil moisture, nutrient content, and foliar stable carbon isotope compositions to gain insights into the response of alpine grassland ecosystems to permafrost degradation on the Qinghai-Tibet Plateau.

Results

Moisture content of the surface layer decreased with increasing thaw depth. The correlation between thaw depth and surface soil moisture content was strongest in June and decreased in July and August. The strongest correlation occurred at a depth of 20 cm to 30 cm. The dominant species shifted from Cyperaceae in alpine meadow to mesoxerophytes in alpine steppe before finally shifting to xerophytes in alpine desert steppe. Thaw depth correlation was significantly negative with organic C content (r?=??0.49, P?<?0.05) and with total N content (r?=??0.62, P?<?0.01). The leaf δ13C of Carex moorcroftii increased with increasing thaw depth and followed a linear relationship (R 2?=?0.85, P?=?0.008).

Conclusions

Permafrost degradation decreases surface soil moisture and soil nutrient supply capacity. Increasing permafrost degradation decreases the number of plant families and species, with hygrophytes and mesophytes gradually replaced by mesoxerophytes and xerophytes. The water-use efficiency of plants improved in response to increasing water stress as surface layers dried during permafrost degradation. Permafrost on the Qinghai–Tibetan Plateau is expected to further degrade as global warming worsens. Therefore, more attention should be dedicated to the response of alpine ecosystems during permafrost degradation.  相似文献   

9.

Background and aims

Climate warming, nitrogen (N) deposition and land use change are some of the drivers affecting ecosystem processes such as soil carbon (C) and N dynamics, yet the interactive effects of those drivers on ecosystem processes are poorly understood. This study aimed to understand mechanisms of interactive effects of temperature, form of N deposition and land use type on soil C and N mineralization.

Methods

We studied, in a laboratory incubation experiment, the effects of temperature (15 vs. 25 °C) and species of N deposition (NH4 +-N vs. NO3 ?-N) on soil CO2 efflux, dissolved organic C (DOC) and N (DON), NH4 +-N, and NO3 ?-N concentrations using intact soil columns collected from adjacent forest and grassland ecosystems in north-central Alberta.

Results

Temperature and land use type interacted to affect soil CO2 efflux, concentrations of DON, NH4 +-N and NO3 ?-N in most measurement times, with the higher incubation temperature resulted in the higher CO2 efflux and NH4 +-N concentrations in forest soils and higher DON and NO3 ?-N concentrations in grassland soils. Temperature and land use type affected the cumulative soil CO2 efflux, and DOC, DON, NH4 +-N and NO3 ?-N concentrations. The form of N added or its interaction with the other two factors did not affect any of the C and N cycling parameters.

Conclusions

Temperature and land use type were dominant factors affecting soil C loss, with the soil C in grassland soils more stable and resistant to temperature changes. The lack of short-term effects of the deposition of different N species on soil C and N mineralization suggest that maybe there was a threshold for the N effect to kick in and long-term experiments should be conducted to further elucidate the species of N deposition effects on soil C and N cycling in the studied systems.  相似文献   

10.

Background and aims

Nitrogen (N) is one of the most important limiting factors influencing plant growth and reproduction in alpine and tundra ecosystems. However, in situ observations of the effects of root traits on N absorption by alpine plant species are still lacking.

Methods

We investigated the rates of N uptake and the effect of root characteristics in ten common herbaceous alpine plant species using a 15N isotope tracer technique and the root systems of plants growing in a semi-arid steppe environment on the Tibetan Plateau. Our objective was to determine the root traits (root biomass, volume, surface area, average diameter, length, specific root length and specific root area) that make the largest contribution to the total uptake of N (15N–NO3 ?, 15N–NH4 + or 15N–glycine) by alpine plant species.

Results

Monocotyledonous species had higher absorption rates for 15N–NH4 +, 15N–NO3 ?, 15N–glycine and total 15N than dicotyledonous species (P < 0.05). The root biomass, volume, surface area and average diameter were negatively correlated with the absorption capacity for 15N–NH4 +, 15N–NO3 ? and total 15N across the ten alpine plant species. However, the specific root length and the specific root area had significantly positive effects on the uptake of N.

Conclusions

In contrast with traditional views on the uptake of N, the N uptake rate was not improved by a larger root volume or root surface area for these alpine plant species in a high-altitude ecosystem. Root morphological traits had greater impacts on N absorption than traits related to the root system size in alpine herbaceous plants.
  相似文献   

11.

Background and aims

Plant physiological traits and their relation to soil N availability was investigated as regulators of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria japonica) plantation in central Japan.

Methods

At the study site, previous studies demonstrated that both net and gross soil nitrification rates are high on the lower slope and there are dramatic declines in different sections of the slope gradient. We examined the distributions of understory plant species and their nitrate (NO 3 ? -N) use traits, and compared the results with the soil traits.

Results

Our results show that boundaries between different dominant understory species correspond to boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant understory species have species-specific physiological traits in their use of NO 3 ? -N. Pieris japonica lacks the capacity to use NO 3 ? -N as a N source, but other species do use NO 3 ? -N. Lindera triloba, whose distribution is unrelated to soil NO 3 ? -N availability, changes the extent to which it uses NO 3 ? -N in response to soil NO 3 ? -N availability.

Conclusions

Our results indicate that differences in the physiological capabilities and adaptabilities of plant species in using NO 3 ? -N as a N source regulate their distribution ranges. The identity of the major form of available soil N is therefore an environmental factor that influences plant distributions.  相似文献   

12.

Aims

We investigated the influence of tree species on the natural 15N abundance in forest stands under elevated ambient N deposition.

Methods

We analysed δ15N in litter, the forest floor and three mineral soil horizons along with ecosystem N status variables at six sites planted three decades ago with five European broadleaved tree species and Norway spruce.

Results

Litter δ15N and 15N enrichment factor (δ15Nlitter–δ15Nsoil) were positively correlated with N status based on soil and litter N pools, nitrification, subsoil nitrate concentration and forest growth. Tree species differences were also significant for these N variables and for the litter δ15N and enrichment factor. Litter from ash and sycamore maple with high N status and low fungal mycelia activity was enriched in 15N (+0.9 delta units) relative to other tree species (European beech, pedunculate oak, lime and Norway spruce) even though the latter species leached more nitrate.

Conclusions

The δ15N pattern reflected tree species related traits affecting the N cycling as well as site fertility and former land use, and possibly differences in N leaching. The tree species δ15N patterns reflected fractionation caused by uptake of N through mycorrhiza rather than due to nitrate leaching or other N transformation processes.  相似文献   

13.

Background and Aims

Global change will likely express itself in southwestern United States arid lands through changes in amounts and timing of precipitation in response to elevated CO2 concentrations. In addition, increased nitrogen (N) deposition may occur due to increased urban development. This study addressed the effects of water and N availability on C allocation in arid land soil-plant systems.

Methods

Columns filled with Mojave Desert topsoil containing Larrea tridentata seedlings with two treatment levels each of N and soil moisture were labeled by exposure to 13C-enriched CO2.

Results

Increased soil moisture increased plant biomass, total 13C uptake, 13C levels in leaves, soil organic matter, and soil respiration, decreased relative C allocation to stems but increased allocation to soil organic matter. Increased soil N availability increased N uptake but decreased C allocation to soil respiration presumably due to decreased substrate supply for microbes. There was no detectable label in carbonate C, suggesting that this pool does not significantly contribute to ecosystem C fluxes.

Conclusions

Our study indicates that increased water availability causes increased C uptake with increased C allocation to soil organic matter in Larrea tridentata-dominated communities while increased N deposition will have a minimal impact on C sequestration.  相似文献   

14.

Aims

Coexistence of trees and grasses in nutrient-poor arid savannas may result in competition for soil N. While grasses may be more effective than woody plants in acquiring N from the soil, some leguminous woody species rely on N2 fixation. We assessed the role of N2 fixation in the N-budget of Acacia mellifera seedlings by varying N supply and grass competition.

Methods

The contribution of N2 fixation to the N-budget of Acacia mellifera seedlings with varying N supply and grass competition was determined by measuring growth, nutrient concentrations, and 15N values.

Results

Tree seedlings were 4-fold taller and had 20-fold more biomass in the absence of grass. Tree foliar δ15N was lower with (?0.25?±?0.2‰, n?=?9) than without grasses (5.2?±?0.1‰, n?=?64). The contribution of N2-fixation to the N budget decreased with increasing N supply. Greater reliance on N2-fixation by trees in the presence of grasses did not result in greater biomass accumulation or tissue [N] relative to tree seedlings grown without grass competition. Tree seedlings competing with grass had significantly more negative δ13C (?29.5?±?0.6‰) than seedlings without grass competition (?28.8‰?±?0.5‰).

Conclusions

Induction of N2-fixation by grass may have resulted from competition for nutrients. N2-fixation enables tree seedlings to compensate for limited soil N and survive grass competition at a critical and vulnerable developmental stage of germination and establishment.  相似文献   

15.

Background and aims

The aim of this study is to enhance our knowledge of nitrogen (N) cycling and N acquisition in tropical montane forests through analysis of stable N isotopes (δ15N).

Methods

Leaves from eight common tree species, leaf litter, soils from three depths and roots were sampled from two contrasting montane forest types in Jamaica (mull ridge and mor ridge) and were analysed for δ15N.

Results

All foliar δ15N values were negative and varied among the tree species but were significantly more negative in the mor ridge forest (by about 2 ‰). δ15N of soils and roots were also more negative in mor ridge forests by about 3 ‰. Foliar δ15N values were closer to that of soil ammonium than soil nitrate suggesting that trees in these forests may have a preference for ammonium; this may explain the high losses of nitrate from similar tropical montane forests. There was no correlation between the rankings of foliar δ15N in the two forest types suggesting a changing uptake ratio of different N forms between forest types.

Conclusions

These results indicate that N is found at low concentrations in this ecosystem and that there is a tighter N cycle in the mor ridge forest, confirmed by reduced nitrogen availability and lower rates of nitrification. Overall, soil or root δ15N values are more useful in assessing ecosystem N cycling patterns as different tree species showed differences in foliar δ15N between the two forest types.  相似文献   

16.

Background and aims

The impacts of atmospheric nitrogen (N) deposition on terrestrial ecosystem processes remain controversial, mostly because of the uncertainty regarding the fates of deposited N. We conducted a 16-week simulated deposition study to experimentally trace N in a greenhouse plant-soil system.

Methods

Using a two-way factorial design, we added (15NH4)2SO4 solution twice a week to pots containing different soil organic matter (SOM) content and with or without a live plant (Salix dasyclados). The recoveries of 15N in soil, plant biomass, and leaching solution were quantified.

Results

We found most 15N was retained in soil (18.0–59.2%), with significantly more 15N recovered from high-SOM soils than from low-SOM soils. Plant presence significantly increased 15N retention in soil. Plant biomass accounted for 10–20% of the 15N input, with proportionally more 15N assimilated when plants were grown in low-SOM soils. Leaching loss of 15N was relatively low (10–17%).

Conclusion

Our study suggests that SOM content and plant presence significantly affect the fates of deposited N. Indeed, N would be preferentially retained in soils with high SOM content and live plant, while plants would assimilate more deposited N when grown in low SOM soils. Global biogeochemical models thus need to incorporate such soil-specific N retention and plant N assimilation.  相似文献   

17.

Background and aims

The association of the legume Anthyllis vulneraria and the grass Festuca arvernensis, was found to be very efficient for the phytostabilisation of highly multi-metal contaminated mine tailings. Our objective was to quantify the contribution of Anthyllis inoculated with its symbiotic bacteria Mesorhizobium metallidurans to the soil N pool and to test whether a starter nitrogen fertilization may improve symbiotic nitrogen fixation and the growth of Festuca.

Methods

Plants of Festuca and of Anthyllis inoculated with M. metallidurans were grown separately during eight months in pots filled with mine contaminated soil. Estimation of the N fluxes was realized using 15?N isotopic methods.

Results

Starter N fertilization (28 kg N ha?1) improved symbiotic N2 fixation and the growth of both species. Belowground N balance (N rhizodeposition – soil N uptake) of the non-fertilized Anthyllis at maturity was negative (?30.6 kg N ha?1). However, the amount of N derived from fixation, including above- and belowground parts, was 78.6 kg N ha?1, demonstrating the ability of this symbiotic association to improve soil N content after senescence.

Conclusions

i) soil N enrichment by the N2-fixing symbiotic association occurs after plant senescence, when decaying leaves and shoots are incorporated into the soil; ii) application of a starter fertilization is an efficient solution to improve phytostabilisation of highly contaminated sites.  相似文献   

18.

Background and Aims

Increased plant density improves grain yield and nitrogen (N)–use efficiency in winter wheat (Triticum aestivum L.) by increasing the root length density (RLD) in the soil and aboveground N–uptake (AGN) at maturity. However, how the root distribution and N–uptake at different soil depths is affected by plant density is largely unknown.

Methods

A 2–year field study using the winter wheat cultivar Tainong 18 was conducted by injecting 15?N–labeled urea into soil at depths of 0.2, 0.6, and 1.0 m under four plant densities of 135 m?2, 270 m?2,405 m?2, and 540 m?2.

Results

We observed significant RLD and 15?N–uptake increases at each soil depth as the plant density increased from 135 to 405 m?2. 15?N–uptake increased with plant density as the soil depth increased, although the corresponding RLD value fell with depth. The 15?N–uptake at each soil depth was positively related to the RLD at the same depth. The total AGN was positively related to RLD in deep soil, especially at 0.8–1.2 m.

Conclusions

Increasing the plant density from 135 m?2 to the optimum increases AGN primarily by increasing the RLD in deep soil and therefore increasing the plant density of winter wheat can be used to efficiently recover N leached to deep soil. Moreover, the total root numbers per unit area and RLD still increased at supraoptimal density while shoot number and N uptake stagnated.  相似文献   

19.

Background and aims

Below-ground grass competition limits woody establishment in savannas. N2-fixing legumes may, however, have a nutritional advantage over broad-leaved species. We hypothesised that broad-leaved non-legume savanna thicket species would be more severely constrained by grass competition for N and consequently respond more to N-fertilization than the legume, Acacia karroo.

Methods

A. karroo and five non-legume thicket species (Maytenus senegalensis, M. heterophylla, Euclea divinorum, Ziziphus mucronata, Schotia brachypetala) were grown together in an irrigated competition experiment with clipped-, unclipped-grass and without grass with/without N-fertilizer. The biomass, foliar nutrient, δ13C and δ15N of grasses and woody species were determined.

Results

Growth of both A. karroo and the non-legume species was equally sensitive (c. 90 % reduction) to both clipped- and unclipped-grass competition, regardless of N-fertilization. With grass competition, however, foliar [N] increased and δ15N decreased in response to N-fertilization. Grass biomass accumulation was also unchanged by fertilisation, despite increases in foliar [N] and decreases in δ15N.

Conclusions

The N2-fixation capacity of A. karroo provided no growth advantage over non-legumes. The lack of responsiveness of biomass accumulation by both the woody species and the grasses to N-fertilization, despite evidence that plants accessed the N-fertilizer, indicates limitation by other nutrients.  相似文献   

20.

Background and Aims

In spite of the broad array of studies conducted on the ecology of bracken fern (Pteridium aquilinum (L.) kuhn), there is currently only a limited understanding of how P. aquilinum alters the soil environment in which it succeeds. P. aquilinum is one of the world’s most aggressive invasive species and is known to effectively invade conservation priority habitats such as Calluna vulgaris (L.) heathland. The aim of this study was to evaluate differences in soil properties between intact stands of C. vulgaris and neighboring P. aquilinum to assess how P. aquilinum alters soil N transformations in a manner that might promote its success.

Methods

Replicate plots in five independently paired stands of P. aquilinum and C. vulgaris were established on land in which P. aquilinum is actively invading. Soils under the two plant types were evaluated for total N, mineralisable N, net nitrification, nitrifier activity, denitrification enzyme activity, polyphenol N complexing capacity, and resin sorption of inorganic N.

Results

Soils under P. aquilinum were consistently higher in NO3 - and NH4 + concentrations compared to C. vulgaris. Extractable organic and inorganic N concentrations for soil under P. aquilinum were respectively 65 %, 77 % and 358 % greater in amino N NH4 +-N and NO3 --N compared to that under C. vulgaris. In-situ net nitrification (NO3 - sorption to ionic resins) was found to be nearly 300 times greater under P. aquilinum than under C. vulgaris.

Conclusions

P. aquilinum alters the soil environment as to create an inorganic N-rich environment that is favorable to its growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号