首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In contrast to previous work, the distribution of cholinesterase was found to be ubiquitous in plant leaves. Cholinesterase activity was detected in 91% of the 70 species surveyed from 50 higher plants and three families of ferns. A radiometric assay was used to determine the hydrolysis of acetylcholine by leaf tissue slices in the presence and absence of 29 μ M diisopropyl phosphofluoridate. The results obtained using this inhibitor as a criterion for cholinesterase activity were found to be consistent with previous studies using neostigmine as the inhibitor although there were some quantitative differences between the inhibitors. With some of the tested plants acetyl-β-methylcholine was also hydrolyzed, indicating that acetylcholinesterase rather than pseudocholinesterase was present at least in these cases. These findings demonstrate that the relative activity of cholinesterase in leaves can serve as an indicator of organophosphorous anticholinesterase contamination of the environment.  相似文献   

2.
This study focused on the taxonomy and diversity of the endophytic fungi associated with Vellozia gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. A total of 285 fungal isolates were recovered from leaves and roots of the V. gigantea, which were identified in 27 genera and 87 different taxa using molecular taxonomy methods. Xylaria berteri, Diaporthe sp. 1, Nigrospora oryzae, Muscodor sp. 1, Colletotrichum aeschynomene, and Trichoderma viride occurred in the highest frequency in both the leaf and root. Diaporthe was the most abundant genus, with 70 endophytic isolates recovered from the leaves and roots. Among all the taxa identified, 62 occurred as singlets, including those of the genera Clonostachys, Coccomyces, Crucellisporiopsis, Daldinia, Myxotrichum, Pallidocercospora, Pezicula, Peyronellaea, and Pseudocercospora. The diversity indices displayed high values, showing that V. gigantea shelters a diverse and rich mycobiota. Our results indicate that V. gigantea shelters in its tissues a highly diverse and cryptic mycobiota, including several rare species previously unreported as endophytes, but that are reported to have different ecological functions, which might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.  相似文献   

3.
4.
Abstract. 1. Eurytoma gigantea Walsh is a specialist parasitoid of the tephritid gallmaker Eurosta solidaginis (Fitch).
2. In the natural environment the incidence of parasitism by Eurytoma is greater in small galls than in large ones.
3. Laboratory experiments demonstrated that small galls are not more frequently discovered; however, oviposition attempts on small galls were more likely to be successful.
4. Eurytoma spends much time probing galls too big to penetrate; this leads to a decrease in foraging efficiency when many large galls are present.
5. The chance of successfully penetrating a gall depends on the thickness of the gall wall and the length of the parasitoid's ovipositor.
6. A simulation model was constructed which shows that a gallmak-er's chance of being parasitized depends on gall size, the number of parasitoids that discover the gall, and their ovipositor lengths.  相似文献   

5.
Validation of a single round PCR-based assay to confirm as Myxobolus cerebralis myxospores obtained from pepsin-trypsin digest preparations is described. The assay is a modification of a PCR assay published previously, based on the amplification of a segment of the gene encoding the 18S ribosomal subunit of M. cerebralis. The sensitivity, specificity and upper and lower detection limits were determined using known M. cerebralis and non-M. cerebralis myxospores and M. cerebralis-free fish. The sensitivity of PCR confirmation was 100% (95% confidence interval of 83.2-100%). The specificity was 100% (95% confidence interval of 87.2-100%). The upper detection limit was approximately 100,000 myxospores per reaction; the lower detection limit was approximately 50 myxospores per reaction. Given the high sensitivity and specificity of the assay, substitution of this assay for histologic confirmation of M. cerebralis infection is encouraged.  相似文献   

6.
Thermally‐induced changes in Arabidopsis thaliana leaves were investigated with a novel cryo microscope by multiphoton, fluorescence lifetime and spectral imaging as well as micro spectroscopy. Samples were excited with fs pulses in the near‐infrared range and cooled/heated in a cryogenic chamber. The results show morphological changes in the chloroplast distribution as well as a shift from chlorophyll to cell‐wall fluorescence with decreasing temperature. At temperatures below –40 °C, also second harmonic generation was observed. The measurements illustrate the suitability of multiphoton imaging to investigate thermally‐induced changes at temperatures used for cryopreservation as well as for basic investigations of thermal effects on plant tissue in general (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t‐test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco‐types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco‐type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white‐sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long‐term conservation of cetaceans in Southeast Alaska.  相似文献   

8.
H. W. Schmidt  J. Schönherr 《Planta》1982,156(4):380-384
The effect of BF3-methanol treatment on the mass and fine structure of isolated Clivia leaf cuticles at different stages of development has been investigated. BF3-methanol cleaves ester linkages in cutin; however, the cuticles are not completely depolymerized. With increasing age, the residue left after BF3-methanol treatment increases in mass. In very young cuticles, 10% of the total cutin resisted BF3-methanol and the fraction of nonester cutin increased up to 62% in mature leaves. Transmission electron microscopy shows that fine structure of the cuticle proper is severely distorted but not destroyed. The internal cuticular layer, which exhibits a heavy contrast when fixed with KMnO4, is completely depolymerized, while the external cuticular layer is hardly affected. The results are discussed in relation to cuticle development and to the function of cuticles as transpiration resistances.Abbreviation CP cuticle proper - ECL external cuticular layer - E cutin ester bonded cutin - ICL internal cuticular layer - MX-membrane polymer matrix membrane - NE-cutin non-ester bonded cutin - TEM transmission electron microscopy  相似文献   

9.
The steady-state regime of linear photosynthetic electron transport implies concerted operation of photosystems I and II (PSI and PSII) in plant leaves. Acidification of the thylakoid lumen is known to cause down-regulation of PSII photochemical activity but it is not yet clear how the proton accumulation in the lumen affects the PSI activity and coordinated operation of the two photosystems in intact leaves. Chlorophyll fluorescence and absorbance of oxidized chlorophyll P700 in the near-infrared region ΔA 810–870A 810) are convenient noninvasive indicators of the redox state of PSII and PSI components, respectively. Simultaneous measurements of chlorophyll fluorescence and ΔA 810 in pea leaves revealed that some kinetic stages in the induction curves occur synchronously both in dark-adapted and preilluminated leaves. After the treatment of leaves with ionophores promoting or inhibiting the light-induced thylakoid pH gradient (valinomycin, nigericin, monensin), the induction curves of ΔA 810 and chlorophyll fluorescence were consistently modified. The results suggest that characteristic stages of ΔA 810 induction curve, representing the second and the third waves of P700 photooxidation, are closely related to ΔpH generation, although the bases of ΔpH dependence differ for these two stages. The second wave of ΔA 810 depends presumably on stroma alkalinization as a precondition for photoactivation of electron flow from PSI to terminal acceptors. The third wave of ΔA 810 is apparently due to retardation of electron flow between PSII and PSI upon acidification of the lumen.  相似文献   

10.
11.
Fungal endophytes were isolated from leaves of Centella asiatica (Apiaceae) collected at Mangoro (middle eastern region of Madagascar, 200 km from Antananarivo). Forty- five different taxa were recovered. The overall foliar colonization rate was 78%. The most common endophytes were the non-sporulating species 1 (isolation frequency IF 19.2%) followed by Colletotrichum sp.1 (IF 13.2%), Guignardia sp. (IF 8.5%), Glomerella sp. (IF 7.7%), an unidentified ascomycete (IF 7.2%), the non-sporulating species 2 (IF 3.7%) and Phialophora sp. (IF 3.5%). Using sequences of the ribosomal DNA internal transcribed spacer (ITS) regions, major endophytes (IF > 7%) were identified as xylariaceous taxa or as Colletotrichum higginsianum, Guignardia mangiferae and Glomerella cingulata. Results from in vitro fungal disk experiments showed a strong inhibitory activity of the xylariaceous non-sporulating species 1 against G. mangiferae and C. higginsianum and of C. higginsianum against G. mangiferae. This can be explained by antagonism between dominant taxa.  相似文献   

12.
冷季型草坪杂草的季节性发生与演替   总被引:5,自引:2,他引:5  
对西安地区冷季型草坪杂草的种类、发生时期进行普查,对杂草的发生与季节性演替规律进行了讨论与分析,发现阔叶杂草优势种有酢酱草、蛇莓、紫菀、深绿蒿等,单子叶杂草优势种有狗牙根、马唐、莎草等,并提出了以多度等级确定危害成度及防治建议。  相似文献   

13.

Background and Aims

Several animals that live on bromeliads can contribute to plant nutrition through nitrogen provisioning (digestive mutualism). The bromeliad-living spider Psecas chapoda (Salticidae) inhabits and breeds on Bromelia balansae in regions of South America, but in specific regions can also appear on Ananas comosus (pineapple) plantations and Aechmea distichantha.

Methods

Using isotopic and physiological methods in greenhouse experiments, the role of labelled (15N) spider faeces and Drosophila melanogaster flies in the nutrition and growth of each host plant was evaluated, as well as seasonal variation in the importance of this digestive mutualism.

Key Results

Spiders contributed 0·6 ± 0·2 % (mean ± s.e.; dry season) to 2·7 ± 1 % (wet season) to the total nitrogen in B. balansae, 2·4 ± 0·4 % (dry) to 4·1 ± 0·3 % (wet) in An. comosus and 3·8 ± 0·4 % (dry) to 5 ± 1 % (wet) in Ae. distichantha. In contrast, flies did not contribute to the nutrition of these bromeliads. Chlorophylls and carotenoid concentrations did not differ among treatments. Plants that received faeces had higher soluble protein concentrations and leaf growth (RGR) only during the wet season.

Conclusions

These results indicate that the mutualism between spiders and bromeliads is seasonally restricted, generating a conditional outcome. There was interspecific variation in nutrient uptake, probably related to each species'' performance and photosynthetic pathways. Whereas B. balansae seems to use nitrogen for growth, Ae. distichantha apparently stores nitrogen for stressful nutritional conditions. Bromeliads absorbed more nitrogen coming from spider faeces than from flies, reinforcing the beneficial role played by predators in these digestive mutualisms.  相似文献   

14.
Summary Induction of plant defence against herbivores may include the attraction by volatile infochemicals of natural enemies of the herbivore. The emitted volatiles that mediate this attraction may also affect the behaviour of the herbivore itself. In this paper we investigate the response of the herbivorous spider miteTetranychus urticae and the predatory mitePhytoseiulus persimilis towards volatiles whose production is induced in detached Lima bean leaves. Detached uninfested Lima bean leaves were incubated on wet cotton wool on which bean leaves infested with spider mites (T. urticae) were present simultaneously or had been present previously. These treatments induce the production of volatile infochemicals in the uninfested bean leaf tissue: predatory mites are attracted and spider mites are deterred. These are the first data on the response of predators and herbivores to plant volatiles whose production was induced in detached uninfested leaves.  相似文献   

15.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

16.
Changes in plant population size, induced by various forms of habitat degradation, can affect the performance of plants by altering their interactions with other organisms such as pollinators and herbivores. However, studies on plant reproductive response to variation in population size that simultaneously consider different interactions are rare. In this study, we examined (1) how levels of pollinator visitation and florivory vary with population size of a self-incompatible herb, Verbascum nigrum (Scrophulariaceae), (2) the relative effect of these two interactions on host seed set, and (3) whether the intensity of florivory influences pollinator visitation rate. The intensity of florivory increased, whereas pollinator visitation rate decreased with host population size. Although average seed production was negatively affected by the intensity of florivory, seed production was independent of population size. The direct negative effect of florivores on plant seed set was indirectly enforced by their negative effect on pollinator visitation rate. Our results emphasize the complexity of responses of different plant–animal interactions to plant population size. However, interactions involving specialized organisms are likely to disrupt first as plant population size decreases.  相似文献   

17.
18.
The interactive effects of light and temperature on C(4) phosphoenolpyruvate carboxylase (PEPC) were examined both in vivo and in situ using the leaves of Amaranthus hypochondriacus collected at different times during a day and in each month during the year. The maximum activity of PEPC, least inhibition by malate, and highest activation by glucose-6-phosphate were at 15.00 h during a typical day, in all the months. This peak was preceded by maximum ambient light but coincided with high temperature in the field. The highest magnitude in such responses was in the summer (e.g. May) and least in the winter (e.g. December). Light appeared to dominate in modulating the PEPC catalytic activity, whereas temperature had a strong influence on the regulatory properties, suggesting interesting molecular interactions. The molecular mechanisms involved in such interactive effects were determined by examining the PEPC protein/phosphorylation/mRNA levels. A marked diurnal rhythm could be seen in the PEPC protein levels and phosphorylation status during May (summer month). In contrast, only the phosphorylation status increased during the day in December (winter month). The mRNA peaks were not as strong as those of phosphorylation. Thus, the phosphorylation status and the protein levels of PEPC were crucial in modulating the daily and seasonal patterns in C(4) leaves in situ. This is the first detailed study on the diurnal as well as seasonal patterns in PEPC activity, its regulatory properties, protein levels, phosphorylation status, and mRNA levels, in relation to light and temperature intensities in the field.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号