首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen’s storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.  相似文献   

2.

Background and aims

Natural abundance of the stable nitrogen (N) isotope 15N can elucidate shifts in plant N acquisition and ecosystem N cycling following disturbance events. This study examined the potential relationship between foliar δ15N and depth of plant N acquisition (surface organic vs. mineral soil) and nitrification as conifer stands develop following stand-replacing wildfire.

Methods

We measured foliar δ15N along an 18-site chronosequence of jack pine (Pinus banksiana) stands, 1 to 72 years in age post-wildfire. Foliar δ15N was compared to total δ15N of the organic (Oe + Oa) and mineral (0–15 cm) soil horizons, and organic horizon N mineralization and nitrification as functions of total mineralization.

Results

Foliar δ15N declined with stand age, yet wildfire effects were heterogeneous. Jack pine seedlings on burned, mineral soil patches in the youngest stand were significantly more enriched than those on unburned, organic patches (P?=?0.007). High foliar values in the youngest stands relative to mineral-horizon δ15N indicate that nitrification also likely contributed to seedling enrichment.

Conclusions

Our results suggest jack pine seedlings on burned patches obtain N from the mineral soil with potentially high nitrification rates, whereas seedlings on unburned patches and increasingly N-limited, mature jack pine acquire relatively more N from organic horizons.  相似文献   

3.
Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO3 and NH4 were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.  相似文献   

4.

Background and aims

The introduction of Acacia mangium in Eucalyptus urophylla x grandis stands improves wood production on poor sandy soils of coastal plains of the Congo. We assessed the impact of A. mangium plantations in pure stands and in mixture with eucalypt trees on the physico-chemical properties of the soil after one rotation.

Methods

Bulk densities, N, C, available P and pH were determined on soil sampled in the pure acacia (100A), pure eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees.

Results

N and C concentrations were higher in 50A:50E than in 100A and 100E in the top soil layer. The pH was lower in 100A and higher in 100E than in 50A:50E. The available P was lower in 50A:50E than in 100A and 100E. Leaf N was lower in 50A:50E than in 100A for acacia, and higher than in 100E for eucalypt. Leaf P was similar for acacia but higher for eucalypt in 50A:50E than in 100E. In contrast to P, the amount of N in aboveground litterfall increased with the proportion of acacia in the stand.

Conclusions

The introduction of acacia trees in eucalypt plantations increased C and N contents of the soil but decreased the available P content in the mixed-species stand. This may be related to a higher uptake of P needed to maintain the N:P stoichiometry in eucalypt leaves.  相似文献   

5.

Background and aims

Soil pH is among the major environmental factors affecting plant growth. Although the optimum range of soil pH for growth and the tolerance of pH extremes widely vary among plant species, the pH tolerance mechanisms in plants are still poorly understood. In this study, possible mechanisms were examined to explain the differences in tolerance of boreal plants to root zone pH.

Methods

In the controlled-environment solution culture experiments, we compared growth, physiological parameters and tissue nutrient concentrations in aspen, white spruce and tamarack seedlings that were subjected to 8 weeks of root zone pH treatments ranging from 5.0 to 9.0.

Results

The pH treatments had little effect on dry weights and net photosynthesis in white spruce seedlings despite reductions in transpiration rates at higher pH levels. In aspen and tamarack, both the growth and physiological parameters significantly decreased at pH higher than 6.0. The chlorosis of young tissues in aspen and tamarack was associated with the reductions in foliar concentrations of several of the examined essential nutrients including Fe and Mn. Although the plants varied in their ability to deliver essential nutrients to growing leaves, there was no direct correlation between tissue nutrient concentrations, chlorophyll concentrations and plant growth. The results also demonstrated strong inhibition of transpiration rates by high pH.

Conclusions

The results suggest that high root zone pH can upset water balance in pH sensitive species including aspen. Although the uptake and assimilation of essential elements such as Fe and Mn contribute to plant tolerance of high soil pH, we did not observe a direct relationship between growth and foliar nutrient concentrations to account for the observed differences in growth.  相似文献   

6.

Aims

Fine root is an important part of the forest carbon cycle. The growth of fine roots is usually affected by forest intervention. This study aims to investigate the fine root mass, production, and turnover in the disturbed forest.

Methods

The seasonal and vertical distributions of fine root (diameter ≤2 mm) were measured in a Chinese cork oak (Quercus variabilis Blume) forest. The biomass and necromass of roots with diameters ≤1 mm and 1-2 mm in 0-40 cm soil profiles were sampled by using a sequential soil coring method in the stands after clear cutting for 3 years, with the stands of the remaining intact trees as the control.

Results

The fine root biomass (FRB) and fine root necromass (FRN) varied during the growing season and reached their peak in August. Lower FRB and higher FRN were found in the clear cutting stands. The ratio between FRN and FRB increased after forest clear cutting compared with the control and was the highest in June. The root mass with diameter ≤1 mm was affected proportionately more than that of diameter 1-2 mm root. Clear cutting reduced FRB and increased FRN of roots both ≤1 mm and 1-2 mm in diameter along the soil depths. Compared with the control, the annual fine root production and the average turnover rate decreased by 30.7 % and 20.7 %, respectively, after clear cutting for 3 years. The decline of canopy cover contributed to the dramatic fluctuation of soil temperature and moisture from April to October. With redundancy discriminate analysis (RDA) analysis, the first axis was explained by soil temperature (positive) and moisture (negative) in the control stands. Aboveground stand structure, including canopy cover, sprout height, and basal area, influenced FRB and FRN primarily after forest clear cutting.

Conclusions

This study suggested that the reduction of fine root biomass, production, and turnover rate can be attributed to the complex changes that occur after forest intervention, including canopy damage, increased soil temperature, and degressive soil moisture.  相似文献   

7.

Aims

The below-canopy soil moisture content and litter-layer arthropod abundance and diversity of Acacia karroo trees parasitized by each of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) and uninfected A. karroo trees were investigated in semi-arid savanna, southwest Zimbabwe.

Results

The soils below the canopies of mistletoe-infected trees were significantly low in moisture content compared to those beneath uninfected A. karroo trees. Nevertheless, arthropod species diversity was greater by up to 34 % below the canopies of mistletoe-infected trees than beneath uninfected A. karroo trees, with greater abundances beneath trees infected by E. ngamicum and P. kalachariensis. In addition, the majority of the arthropod species associated with mistletoe-infected trees had litter as their dominant foraging substrate.

Conclusions

Our findings show that mistletoes increase the abundance and diversity of litter-dwelling and –foraging arthropods due to increase in the quality and quantity of litterfall beneath mistletoe-infected trees. By altering the below-canopy arthropod communities and soil moisture content, mistletoes have potential to modify ecosystem processes such as decomposition, soil process rates, and nutrient cycling. Therefore, we suggest that the resulting increase in resource heterogeneity plays an important role in determining the structure and functioning of semi-arid savanna ecosystems.  相似文献   

8.
No-till reduces global warming potential in a subtropical Ferralsol   总被引:1,自引:0,他引:1  

Aims

We investigated the link between tree community composition and soil microbial community biomass and structure in central-eastern Spain.

Methods

The effects of the forest stand composition on the soil organic matter dynamics and on the structure and activity of the soil microbial community have been determined using phospholipid fatty acid profiles and soil enzymatic activities.

Results

The soil and litter N and C contents were higher in Pinus nigra Arn. ssp. salzmannii and Quercus ilex mixed forest stands (SBHO) and in long-term unmanaged Pinus nigra Arn. ssp. salzmannii forest stands (SBPC) than in pure Pinus nigra Arn. ssp. salzmannii forest stands (SBPA) and Pinus nigra Arn. ssp. salzmannii and Juniperus thurifera mixed forest stands (SBSJ). The bacterial biomass was significantly higher in SBSJ and SBPA than in SBPC and SBHO. The results show an uncoupling of the soil microbial biomass and its activity. pH is related to microbial biomass and its community structure under a Mediterranean humid climate.

Conclusions

The tree species seem to affect the biomass of the soil microbial community and its structure. The pH, but not the C/N ratio, is a factor influencing the microbial dynamics, biomass, and community structure.  相似文献   

9.

Background and aims

Quantitative relationships between soil N availability indices and tree growth are lacking in the oil sands region of Alberta and this can hinder the development of guidelines for the reclamation of the disturbed landscape after oil sands extraction. The aim of this paper was to establish quantitative relationships between soil N availability indices and tree growth in the oil sands region of Alberta.

Methods

In situ N mineralization rates, in situ N availability measured in the field using Plant Root Simulators (PRS? probes), laboratory aerobic and anaerobic soil N mineralization rates, and soil C/N and N content were determined for both the forest floor and the 0–20?cm mineral soil in eight jack pine (Pinus banksiana Lamb.) stands in the oil sands region in northern Alberta. Tree growth rates were determined based on changes in tree ring width in the last 6?years and as mean annual aboveground biomass increment.

Results

Soil N availability indices across those forest stands varied and for each stand it was several times higher in the forest floor than in the mineral soil. The in situ and laboratory aerobic and anaerobic soil N mineralization rates, soil mineralized N, in situ N availability measured using PRS probes, soil C/N ratio and N content in both the forest floor and mineral soil, as well as stand age were linearly correlated with tree ring width of jack pine trees across the selected forest stands, consistent with patterns seen in other published studies and suggesting that N availability could be a limiting factor in the range of jack pine stands studied.

Conclusions

In situ and laboratory aerobic and anaerobic N mineralization rates and soil C/N ratio and N content can be used for predicting tree growth in jack pine forests in the oil sand region. Laboratory based measurements such as aerobic and anaerobic N mineralization rates and soil C/N ratio and N content would be preferable as they are more cost effective and equally effective for predicting jack pine growth.  相似文献   

10.

Background and aims

Condensed tannins, a dominant class of plant secondary metabolites, play potentially important roles in plant-soil feedbacks by influencing the soil microbial community. Effects of condensed tannins on the soil microbial community and activity were examined by a short-term tannin-addition experiment under field and laboratory conditions.

Methods

Condensed tannins were extracted from the leaves of a dominant conifer (Dacrydium gracilis) in a tropical montane forest on Mt. Kinabalu, Borneo. The extracted tannins were added to soils beneath the conifer and a dominant broadleaf (Lithocarpus clementianus) to evaluate the dependence of the response to tannin addition on the initial composition of the soil microbial community.

Results

Enzyme activities in the field tannin-addition treatment were lower than in the deionized-water treatment. Carbon and nitrogen mineralization were also inhibited by tannin-addition. The fungi-to-bacteria ratio after tannin-addition was higher compared with the distilled-water treatment in the laboratory experiment.

Conclusions

Based on our results, we suggest that the higher concentration of condensed tannins in the leaf tissues of Dacrydium than in those of Lithocarpus is a factor influencing the microbial community and activity. This may have influences on subsequent plant performance, which induces plant-soil feedback processes that can control dynamics of the tropical montane forest ecosystem.  相似文献   

11.
The removal of conifers from aspen (Populus tremuloides) stands is being undertaken throughout the western United States to restore aspen for local‐ and landscape‐level biodiversity. Current practices include mechanically removing conifers or hand thinning, piling, and burning cut conifers in and adjacent to aspen‐conifer stands. To evaluate the effectiveness of restoration treatments, we examined tree regeneration and herbaceous vegetation cover in thinned, thinned and pile burned, and non‐thinned control stands. Growth rates of small conifer saplings threatening to outcompete and replace aspen were also measured. Two to four years after pile burning, herbaceous vegetation cover within the footprint of burned piles (i.e. burn scars) was 35–73% of that in adjacent areas. Aspen was more likely to regenerate inside burn scars where fewer surrounding trees were true firs. Conifer seedlings were more likely to regenerate in burn scars where more of the surrounding trees were conifers (pine or fir) as opposed to aspen. Fir saplings had much slower growth than did aspen saplings. Overall, our findings show that restoration treatments are promoting desirable outcomes such as enhancing aspen regeneration but that follow‐up treatments will be needed to remove numerous conifer seedlings becoming established after restoration activities. Eliminating conifers, while they are small, growing slowly, and contributing little to fuel loads may be an economical way to prolong restoration treatment effectiveness.  相似文献   

12.

Background

Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition.

Methodology/Principal Findings

We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not.

Conclusions/Significance

Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.  相似文献   

13.

Background and aims

The main objectives of this study were to determine how the carbon age of fine root cellulose varies between stands, tree species, root diameter and soil depth. In addition, we also compared the carbon age of fine roots from soil cores of this study with reported values from the roots of the same diameter classes of ingrowth cores on the same sites.

Methods

We used natural abundance of 14C to estimate root carbon age in four boreal Norway spruce and Scots pine stands in Finland and Estonia.

Results

Age of fine root carbon was older in 1.5–2 mm diameter fine roots than in fine roots with <0.5 mm diameter, and tended to be older in mineral soil than in organic soil. Fine root carbon was older in the less fertile Finnish spruce stands (11–12 years) than in the more fertile Estonian stand (3 and 8 years), implying that roots may live longer in less fertile soil. We further observed that on one of our sites carbon in live fine roots with the 1.5–2 mm diameter was of similar C age (7–12 years) than in the ingrowth core roots despite the reported root age in the ingrowth cores – being not older than 2 years.

Conclusions

From this result, we conclude that new live roots may in some cases use old carbon reserves for their cellulose formation. Future research should be oriented towards improving our understanding of possible internal redistribution and uptake of C in trees.  相似文献   

14.

Key message

Growth response to climate differs between species and elevation. Fir is the most drought-tolerant species. The mountain forests are robust to the climatic changes until now.

Abstract

Alpine mountain forests provide a wide range of ecological and socio-economic services. Climate change is predicted to challenge these forests, but there are still considerable uncertainties how these ecosystems will be affected. Here, we present a multispecies tree-ring network of 500 trees from the Berchtesgaden Alps (Northern Limestone Alps, Southeast Germany) in order to assess the performance of native mountain forest species under climate change conditions. The dataset comprises 180 spruce, 90 fir, 110 larch and 120 beech trees from different elevations and slope exposures. We analyse the species with respect to: (1) the general growth/climate response; (2) the growth reaction (GR) during the hot summer in 2003 and (3) the growth change (GC) resulting from increasing temperatures since the 1990s. Spruce is identified as the most drought-sensitive species at the lower elevations. Fir shows a high drought tolerance and is well suited with regard to climate change. Larch shows no clear pattern, and beech remains unaffected at lower elevations. The unprecedented temperature increase of the last decades did not induce any distinct GC. The mountain forests of the Berchtesgaden Alps appear to be robust within the climatic changes until now.  相似文献   

15.

Aims

The importance of soil properties as determinants of tree vitality and Phytophthora cinnamomi root infections was analysed.

Methods

The study comprised 96 declining stands in western Spain, where declining and non-declining holm oak (Quercus ilex L.) trees were sampled. Soil properties (soil depth, Ah horizon thickness, texture, pH, redox potential, soil bulk density and N-NH4 + and N-NO3 ? concentrations) and P. cinnamomi infections were assessed.

Results

Tree mortality rates increased with low soil bulk densities, which were also associated with more P. cinnamomi-infected trees. Occurrence of infected trees was higher in fine textured soils and in thick Ah horizons. Fine textured soils favoured trees, but with the presence of P. cinnamomi their health status deteriorated. Soil under declining trees had higher N-NO3 ?/N-NH4 + ratio values than under non-declining trees. Additional soil properties changes associated to grazing were not related to decline and P. cinnamomi infections.

Conclusions

The implications of P. cinnamomi in holm oak decline and the influence of soil properties as contributors to pathogen activity were demonstrated. Fine soil textures and thick Ah horizons, usually favourable for vigour and vitality of trees growing in the Mediterranean climate, were shown to be disadvantageous soil properties if P. cinnamomi was present. Fine soil textures and thick Ah horizons are frequently related with higher levels of soil moisture, which increase the inoculum of the pathogen and favours root infection. Grazing does not seem to be directly linked to Q. ilex health status or P. cinnamomi root rot.  相似文献   

16.
Early succession aspen and late succession conifer forests have different architecture and physiology affecting hydrologic transfer processes. An evaluation of water pools and fluxes was used to determine differences in the hydrologic dynamics between stands of quaking aspen (Populus tremuloides) and associated stands of mixed conifer consisting of white fir (Abies concolor), Douglas-fir (Pseudotsuga menziesii), and Engelmann spruce (Picea engelmannii). In 2005 and 2006, measurements of snow water accumulation, snow ablation (melt), soil water content, snowpack sublimation, and evapotranspiration (ET) were measured in adjacent aspen and conifer stands. Peak snow water equivalent (SWE) averaged 34–44% higher in aspen in 2005 (average snow fall) and 2006 (above average snow fall), respectively, whereas snow ablation rates were greater in aspen stands (21 mm day−1) compared to conifer stands (11 mm day−1). When changes in soil water content (due to over-winter snowmelt) were combined with peak snow accumulation in 2006, aspen had greater potential (42–83%) water yield for runoff and groundwater recharge. Snowpack sublimation during the ablation period was not significantly different between meadow, aspen, and conifer sites and comprised less than 5% of the winter precipitation. Extended conifer transpiration in spring and fall did not contribute to large differences in water yield (<28 mm y−1). Summertime ET rates were higher in aspen plots (3.6 mm day−1) than in conifer plots (2.7 mm day−1), and differences in net ET largely reflected soil column porosity. This study shows that the largest differences in annual water yield between aspen and conifer stands result from differences in SWE and net summertime ET. Although SWE and accumulation of water in soil was greater in aspen, it was partly offset by greater net annual ET losses in aspen.  相似文献   

17.

Background and aims

Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability.

Methods

A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E) on soil organic matter stocks and net N mineralization.

Results

A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0–15?cm soil layer. Field incubations conducted every 4?weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64?kg?ha?1?yr?1, respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization.

Conclusions

Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.  相似文献   

18.

Aims

Shrub removal by ploughing has been used widely to reduce the effects of shrub encroachment into open woodlands and grasslands. Our aim was to demonstrate that soil chemical properties varied markedly among three patch types (shrub hummock, debris mound, interspace) which varied in age, almost two decades after shrub removal by ploughing.

Methods

We compared changes in nutrients under 1) young post-ploughing recruits and mature, unploughed shrubs, 2) mature and recently formed debris mounds and 3) ploughed and recovering interspaces at three depths.

Results

Irrespective of their age, nutrient concentrations were greater under shrub hummocks and debris mounds than in the interspaces at two sites. Soil in mature shrub hummocks generally had greater levels of labile carbon and nitrogen (total, mineral, mineralisable), but results varied between sites. There were a few, sometimes inconsistent, effects of ploughing on nutrients under debris mounds, and no differences between the interspaces two decades after ploughing. Nutrient effects were most marked in the top 15 cm of the soil, diminishing rapidly with depth.

Conclusions

Our results reinforce the importance of hummocks and mounds as resource sinks and indicate the long-lasting effects of disturbances such as ploughing on soil nutrient pools.  相似文献   

19.

Background and aims

Forest management activities influences stand nutrient budgets, belowground carbon allocation and storage in the soil. A field experiment was carried out in Southern Ethiopia to investigate the effect of thinning on fine root dynamics and associated soil carbon accretion of 6-year old C. lusitanica stands.

Methods

Fine roots (≤2 mm in diameter) were sampled seasonally to a depth of 40 cm using sequential root coring method. Fine root biomass and necromass, vertical distribution, seasonal dynamics, annual turnover and soil carbon accretion were quantified.

Results

Fine root biomass and necromass showed vertical and temporal variations. More than 70 % of the fine root mass was concentrated in the top 20 cm soil depth. Fine root biomass showed significant seasonal variation with peaks at the end of the major rainy season and short rainy season. Thinning significantly increased fine root necromass, annual fine root production and turnover. Mean annual soil carbon accretion, through fine root necromass, in the thinned stand was 63 % higher than that in the un-thinned stand.

Conclusions

The temporal dynamics in fine roots is driven by the seasonality in precipitation. Thinning of C. lusitanica plantation would increase soil C accretion considerably through increased fine root necromass and turnover.  相似文献   

20.

Key message

Frequent cloud immersion events result in direct uptake of cloud water and improve plant water potentials during daylight hours in saplings of two dominant cloud forest species.

Abstract

In ecosystems with frequent cloud immersion, the influence on plant water balance can be important. While cloud immersion can reduce plant water loss via transpiration, recent advances in methodology have suggested that many species also absorb water directly into leaves (foliar water uptake). The current study examines foliar water uptake and its influence on daily plant water balance in tree species of the endangered spruce–fir forest of the southern Appalachian Mountains, USA. These mountain-top communities are considered relic, boreal forests that may have persisted because of the benefits of frequent cloud immersion. We examined changes in needle water content, xylem water potentials, and stable isotope values in saplings of the two dominant tree species, Abies fraseri and Picea rubens before and after a 24 h period of experimental cloud immersion. Both species exhibited foliar water uptake following immersion, evidenced by substantial changes in stable isotope values of extracted needle water that reflected the composition of the fog water. In addition, total needle water content improved 3.7–6.4 % following experimental submersion and xylem water potentials were significantly greater (up to 0.33 MPa) in cloud-immersed plants over control plants. These results indicate that foliar water uptake may be an adaptive strategy for utilizing cloud water and improving overall tree vigor in these most southerly distributed boreal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号