首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colchicine is known to affect secretory, transport, and degradative functions of ameloblasts. The effects of colchicine on membrane-associated calcium and Ca2+,Mg2(+)-ATPase in secretory and maturation ameloblasts were investigated cytochemically. The pyroantimonate (PPA) method was used for localizing calcium and a modified Wachstein-Meisel medium was used to localize Ca2+,Mg2(+)-ATPase. Sections representing secretory and early maturation stages were examined by transmission electron microscopy. Morphological changes induced by colchicine included dislocated organelles and other well-established reactions to such anti-microtubule drugs. Calcium pyroantimonate (Ca-PA) deposits in most ameloblast types were markedly reduced, with the greater reduction occurring in those cells more severely altered morphologically. However, the cell membranes of both control and experimental smooth-ended maturation ameloblasts were essentially devoid of Ca-PA. The normal distribution and intensity of Ca2+,Mg2(+)-ATPase was not affected by colchicine. Because the observed reduction of membrane-associated calcium is apparently not mediated by Ca2+,Mg2(+)-ATPase in this case, other aspects of the calcium regulating system of ameloblasts are apparently targeted by colchicine.  相似文献   

2.
The degree of heterogeneity of active Na+/K(+)-ATPases has been investigated in terms of ouabain sensitivity. A mathematical analysis of the dose-response curves (inhibition of Na+/K(+)-ATPase) at equilibrium is consistent with the putative existence of three inhibitory states for ouabain two of high (very high plus high) and one of low affinity. The computed IC50 values are: 23.0 +/- 0.15 nM, 460 +/- 4.0 nM and 320 +/- 4.6 microM, respectively. The relative abundance of the three inhibitory states was estimated as: 39%, 36% and 20%, respectively. Direct measurements of [3H]ouabain-binding at equilibrium carried out on membrane preparations with ATP, Mg2+ and Na+ also revealed two distinct high affinity-binding sites, the apparent Kd values of which were 17.0 +/- 0.2 nM (very high) and 80 +/- 1 nM (high), respectively. Dissociation processes were studied at different ouabain concentrations according to both reversal of enzyme inhibition and [3H]ouabain release. The reversal of enzyme inhibition occurred at three different rates, depending upon the ouabain doses used (10 nM, 2 and 100 microM). When the high-affinity sites were involved (ouabain doses lower than 2 microM) the dissociation process was biphasic. A similar biphasic pattern was also detected by [3H]ouabain-release. The time-course of [3H]ouabain dissociation (0.1 microM) was also biphasic. These data indicate that the three catalytic subunits of rat brain Na+/K(+)-ATPase alpha 1, alpha 2 and alpha 3 (Hsu, Y.-M. and Guidotti, G. (1989) Biochemistry 28, 569-573) are able to hydrolyse ATP and exhibit different affinities for cardiac glycosides.  相似文献   

3.
The dose dependence of the Na+, K(+)-ATPase ouabain inhibition in the rat colon smooth muscle permeabilized microsomes has been analyzed according to the model of two independent binding sites of inhibitor to determine the activity of separate molecular forms of the enzyme that differ by affinity for cardiac glycosides. The two-phase inhibition curve with moderate content of the high-affinity activity component was revealed. The apparent inhibition constant of the low-affinity component corresponds to the value for the rat kidney microsomal Na+, K(+)-ATPase (alpha1-isoform). The specific role of the alpha2- and alpha1- Na+, K(+)-ATPase catalytic subunit isoforms in colonic smooth muscle electromechanical coupling is considered.  相似文献   

4.
Interaction of Na+,K(+)-ATPase from pig kidney in various conformational states with the dialdehyde analogue of ATP, alpha,alpha-(9-adenyl)-alpha'-D-(hydroxymethyl)diglycolaldehyde triphosphate ester (oATP), has been studied. This interaction leads to an enzyme modification which was shown to be of the affinity type according to the following criteria. 1. oATP can be hydrolyzed by Na+,K(+)-ATPase and prevent inhibition of ATPase activity by gamma-[4-(N-2-chloroethyl-N-methylamino)]benzylamide ATP, indicating that it interacts with Na+,K(+)-ATPase in the enzyme active site. 2. oATP irreversibly inhibits ATP-hydrolyzing activity of Na+,K(+)-ATPase; the extent of inactivation is decreased in the presence of 20 mM ATP and depends on the ion composition of the modification medium. The inhibition and ATP protection are maximal in Na+,Mg2(+)-containing buffer. 3. The value of [14C]oATP incorporation into the alpha subunit is proportional to the degree of enzyme inactivation at low (less than 0.1 mM) concentration of oATP and, on extrapolation to complete inhibition, corresponds to incorporation of 1.05 mol reagent/mol alpha subunit. 4. Tryptic hydrolysis of the isolated oATP-modified alpha subunit and subsequent separation of the peptides revealed only one labelled fragment with a molecular mass of about 10 kDa. Localization of the modified fragment in the alpha-subunit polypeptide chain is discussed. A morpholine-like structure was shown to be formed as a result of the modification.  相似文献   

5.
The catalytic alpha isoforms of the Na+, K(+)-ATPase and stimuli controlling the plasma membrane abundance and intracellular distribution of the enzyme were studied in isolated bovine articular chondrocytes which have previously been shown to express low and high ouabain affinity alpha isoforms (alpha 1 and alpha 3 respectively; alpha 1 > alpha 3). The Na+, K(+)-ATPase density of isolated chondrocyte preparations was quantified by specific 3H-ouabain binding. Long-term elevation of extracellular medium [Na+] resulted in a significant (31%; p < 0.05) upregulation of Na+, K(+)-ATPase density and treatment with various pharmacological inhibitors (Brefeldin A, monensin and cycloheximide) significantly (p < 0.001) blocked the upregulation. The subcellular distribution of the Na+, K(+)-ATPase alpha isoforms was examined by immunofluorescence confocal laser scanning microscopy which revealed predominantly plasma membrane immunostaining of alpha subunits in control chondrocytes. In Brefeldin A treated chondrocytes exposed to high [Na+], Na+, K(+)-ATPase alpha isoforms accumulated in juxta-nuclear pools and plasma membrane Na+, K(+)-ATPase density monitored by 3H-ouabain binding was significantly down-regulated due to Brefeldin A mediated disruption of vesicular transport. There was a marked increase in intracellular alpha 1 and alpha 3 staining suggesting that these isoforms are preferentially upregulated following long-term exposure to high extracellular [Na+]. The results demonstrate that Na+, K(+)-ATPase density in chondrocytes is elevated in response to increased extracellular [Na+] through de novo protein synthesis of new pumps containing alpha 1 and alpha 3 isoforms, delivery via the endoplasmic reticulum-Golgi complex constitutive secretory pathway and insertion into the plasma membrane.  相似文献   

6.
We have screened various alkyl- and arylguanidinium derivatives as possible competitors of Na+ or Rb+ for the cation sites on renal Na+,K(+)-ATPase. Alkyl-monoguanidinium or alkylbisguanidinium (BisG) compounds (chain lengths of C3 to C10) competitively inhibit the occlusion of Rb+ and Na+ with an order of affinities C10 greater than C8 greater than C6 greater than C4 greater than C3. BisG compounds are approximately twice as effective as the equivalent alkylmonoguanidinium compounds. In media of high ionic strength, affinities of tens of micromolar are observed, e.g. 26 microM for BisG 8. m-(mXBG)- and p-xylylenebisguanidinium were synthesized and were found to compete with Rb+ or Na+ with intrinsic affinities of 7.7 and 8.2 microM, respectively. The hydrophobicity rather than the degree of proximity of the guanidinium groups in all BisG compounds appears to determine the binding affinity. A systematic search has been made of conditions in occlusion assays for which the inhibitor affinities are highest. When the pH is raised from 7.0 to 8.5, a 5-fold increase in affinity is observed, suggesting that the guanidinium derivatives compete with protons at sites of pKa approximately 7.5. Replacing Tris-HCl with choline chloride-containing media raised apparent affinities approximately 2-fold. All guanidinium derivatives stabilize the E1 conformation of fluorescein-labeled Na+,K(+)-ATPase, acting as competitive Na+ analogues. In media containing only 1 mM Tris-HCl, pH 8.55, very high affinities were observed for binding to the fluorescein-labeled enzyme (e.g. 0.08 microM for mXBG). In very low ionic strength medium, the inhibition was still competitive with Rb+ ions. However, there was also evidence for nonspecific adsorption to the membranes. The following findings show that mXBG, a typical guanidinium derivative, behaves as a Na(+)-like antagonist. (a) It inhibits Na+,K(+)-ATPase activity, competing strongly with Na+ but only weakly with K+ ions. (b) It inhibits phosphorylation from ATP, competing with Na+ ions. (c) Like Na+ ions, it blocks phosphorylation from inorganic phosphate. Based on these results, we propose that the guanidinium group binds to a relatively wide vestibule at the cytoplasmic surface; but, unlike Na+ or K+ ions, it cannot pass into a narrower region of the cation transport path within the membrane. Therefore, it blocks the occlusion and active transport of cations. In the future, high affinity guanidinium derivatives may serve the purpose of locating cation-binding domains of the pump protein after being converted to reactive affinity or photoaffinity covalent labels.  相似文献   

7.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution we investigated the influence of calixarene C-107 (5,17-diamino(2-pyridyl)methylphosphono-11,23-di-tret-butyl-26,28-dihydroxy-25,27-dipropoxyca-lix[4]arene) on the Na+,K(+)-ATPase activity. It was shown that this calixarene increased the affinity of the enzyme for the sodium pump conventional inhibitor - ouabain: the magnitudes of the seeming constant of inhibition I0.5 changed from 26.9 +/- 1.3 mM to 10.9 +/- 0.6 mM. However the ouabain itself did not influence on the affinity of the Na+,K(+)-ATPase for calixarene C-107.  相似文献   

8.
The effects of ouabain and monensin upon basal and carbachol-stimulated inositol phospholipid breakdown in rat cerebral cortical miniprisms have been investigated. Basal inositol phospholipid breakdown was increased by both compounds at both 6 and 18 mM K+. Enhancement of the carbachol response at 6 mM, but not at 18 mM K+, was found with high concentrations of ouabain. On the other hand, monensin blocked the response to carbachol. Monensin also inhibited the specific binding of [3H]pirenzepine to cerebral cortical membranes, but this was found only at concentrations higher than required to affect the basal and carbachol-stimulated inositol phospholipid breakdown responses. Ouabain did not affect [3H] pirenzepine binding at any of the concentrations tested (6-600 muM). It is concluded that agents that increase the intracellular sodium ion concentration affect the inositol phospholipid breakdown response to carbachol, but that the modulation can be both to potentiate and to inhibit the response.  相似文献   

9.
It was shown that the specific inhibitors of Na+, K(+)-ATPase ouabain and marinobufagenin increased the contraction of an isolated rat diaphragm (positive inotropic effect) by up to approximately 15% in a dose-dependent manner with EC50 = 1.2 +/- 0.3 and 0.3 +/- 0.1 nM, respectively. The results indicate the involvement of the ouabain-sensitive alpha 2 isoform of Na+, K(+)-ATPase. The analysis of ouabain-resting membrane potential dose-response relationships in the presence and absence of hyperpolarizing concentration of acetylcholine (100 nM) suggests the existence of two pools of alpha 2 Na+, K(+)-ATPase with different affinities for ouabain. The pool with a higher ouabain affinity is involved in the hyperpolarizing effect of acetylcholine and, presumably, in the positive inotropic effect of ouabain, which might be a mechanism of regulation of muscle efficiency by circulating endogenous inhibitors of Na+, K(+)-ATPase.  相似文献   

10.
The cardiac glycoside sensitivity of the rat heart changes during postnatal maturation and in response to certain pathological conditions. The Na,K-ATPase is thought to be the receptor for cardiac glycosides, and there are three isozymes of its catalytic (alpha) subunit with different cardiac glycoside affinities: alpha 1 (low affinity) and alpha 2 and alpha 3 (high affinity). We examined the developmental expression of the alpha subunit isozymes in rat ventricular membrane preparations by immunoblotting with isozyme-specific antibodies. The alpha 1 isozyme was present throughout all stages of maturation. A developmental switch from alpha 3 to alpha 2 occurred between 14 and 21 days after birth. Measurements of [3H]ouabain binding and inhibition of Na,K-ATPase activity indicated that alpha 2 and alpha 3 should make equivalent contributions to ion pump capacity; in both neonatal natal and adult preparations, ouabain interacted with a single class of high-affinity binding sites (KD = 15 or 40 nM, respectively; Bmax = 4-5 pmol/mg protein), and at low concentrations produced a similar degree of Na,K-ATPase inhibition (25%). The results indicate that the developmental difference in cardiac glycoside sensitivity cannot be explained by quantitative differences in the proportion of high-affinity isozymes of the Na,K-ATPase. The switch from alpha 3 to alpha 2 coincides with other major changes in cardiac electrophysiology and calcium metabolism.  相似文献   

11.
12.
These in vitro studies of golden hamster sperm were undertaken to determine whether: Na+, K+-adenosine triphosphatase (ATPase) activity is required for capacitation; Na+, K+-ATPase activity is altered during capacitation; and cyclic nucleotides can control this enzyme activity. Hamster sperm were incubated in a medium in which capacitation occurred in an asynchronous manner and in which acrosome reactions began to occur after approximately 3.5 h of incubation. Inhibition of the hamster sperm acrosome reaction by the Na+, K+-ATPase inhibitor ouabain (1 microM) added at Time (T) = 2 or T = 3 h could be fully reversed by the addition of the ionophore nigericin (0.1 microM) at T = 3.5 h. However, when ouabain was added at T = 0 or T = 1 h, similar nigericin addition could not completely reverse the inhibition. Na+, K+-ATPase activity of hamster sperm increased by 2 h of incubation (compared to that measured initially after 15 min) and this activity remained elevated at 3.5 h. Addition of either monobutyryl cyclic adenosine 3':5'-monophosphate ( BtcAMP ) (12.9 microM) or monobutyryl cyclic guanosine monophosphate ( BtcGMP ) (10.5 microM), or the phosphodiesterase inhibitor SQ20009 (10 microM) at 2 h produced a stimulation of acrosome reactions at 4 and 5 h. However, while BtcGMP and SQ 20009 also induced a further increase in Na+, K+-ATPase activity measured at 3.5 h, BtcAMP had no effect. Intracellular cAMP and cGMP levels measured showed cAMP increased by 2 h and remained elevated when measured at 3.5 h, while cGMP could not be consistently detected at 15 min, 2 h or 3.5 h. However, assays of high numbers of uncapacitated sperm did detect a low level of cGMP. These results suggest that Na+, K+-ATPase activity increases in and is essential for early capacitation [and thereby eventually for the acrosome reaction (AR)] of hamster sperm and that the increase in Na+, K+-ATPase activity occurring during capacitation is probably mediated by intracellular cGMP but not cAMP, although both cyclic nucleotides stimulate the hamster sperm AR.  相似文献   

13.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

14.
We tested the hypothesis that the adenylate cyclase system and Na+, K(+)-ATPase are reciprocally related in rat pancreatic islets. We studied the effect of theophylline, caffeine, and dibutyryl cyclic AMP on Na+, K(+)-ATPase activity in a membrane preparation from collagenase-isolated rat islets. Theophylline, caffeine, or dibutyryl cyclic AMP, in concentrations of 1 mM, all inhibited Na+, K(+)-ATPase activity (44,62, and 43%, respectively). Kinetic analysis indicated that theophylline and dibutyryl cAMP inhibit Na+, K(+)-ATPase by different mechanisms; theophylline decreased Vmax and decreased apparent Km (ATP), whereas dibutyryl cAMP decreased Vmax and increased apparent Km (ATP). Similar inhibition of Na+, K(+)-ATPase by theophylline or dibutyryl cAMP was noted in a particulate fraction from rat kidney and in a purified porcine brain Na+, K(+)-ATPase preparation. The adenylate cyclase system and Na+, K(+)-ATPase may act reciprocally in pancreatic islets and in other tissues. In the beta cell this relationship may be essential in coordinating consumption of ATP in the stimulated, as opposed to the rest, state.  相似文献   

15.
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.  相似文献   

16.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

17.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

18.
Effects of Na+, K+, and nucleotides on Mg2+-dependent phosphorylation of (Na+ + K+)-dependent adenosine triphosphatase by Pi were studied under equilibrium conditions. Na+ was a linear competitive inhibitor with respect to Mg2+ and a mixed inhibitor with respect to Pi. K+ was a partial inhibitor; it interacted with positive cooperativity and induced negative cooperativities in the interactions of Mg2+ and Pi with the enzyme. Adenyl-5'-yl (beta, gamma-methylene)diphosphonate, a nonhydrolyzable analog of ATP, interacted with negative cooperativity to inhibit phosphorylation in competition with Pi. ATP was also a competitive inhibitor. Na+ and K+ acted antagonistically, Na+ and nucleotides inhibited synergistically, and K+ and nucleotides were mutually exclusive. In the presence of ouabain, when nucleotides were excluded from the site inhibiting phosphorylation, a low affinity regulatory site for nucleotides became apparent, the occupation of which reduced the rate of dephosphorylation and the initial rate of phosphorylation of the enzyme without affecting the equilibrium constant of the reaction of Pi with the ouabain-complexed enzyme. The regulatory site was also detected in the absence of ouabain. The data suggest that catalytic and transport functions of the oligomeric enzyme may be regulated by homotropic and heterotropic site-site interactions, ligand-induced slow isomerizations, and distinct catalytic and regulatory sites for ATP.  相似文献   

19.
We investigated quantitatively the ultrastructural localization of the alpha-subunit of Na+,K(+)-ATPase in rat retinal pigment epithelial cells by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha- and alpha(+)-subunits of Na+,K(+)-ATPase in the whole retina [the sensory retina plus retinal pigment epithelium (RPE)]. Rat eyes were fixed by perfusion with 4% paraformaldehyde containing 1% glutaraldehyde and embedded in Lowicryl K4M. Ultra-thin sections were incubated with affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase and subsequently with protein A-gold complex. Light microscopy with a silver enhancement procedure revealed Na+,K(+)-ATPase localized to both the apical and the basal plasma membrane domains of the RPE. Quantitative immunocytochemical analysis by electron microscopy showed a higher density of gold particles on the apical surface than on the basolateral one. Microvilli are so well developed on the apical surface of the RPE that the apical surface profile is much longer than the basolateral one. This means that Na+,K(+)-ATPase is mainly located on the apical surface of the RPE cells.  相似文献   

20.
Highly purified preparations of Na++K+-dependent adenosinetriphosphatase were isolated from rat kidney by two different procedures. The I50 values for ouabain inhibition of the rat kidney enzyme at various stages of purification were determined to be essentially the same for all fractions tested (0.7 to 1.0 × 10?4M). These results suggest that the marked insensitivity of the rat enzyme to inhibition by cardiac glycosides is due to the primary structure of the enzyme, and not to some other component in the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号