首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-linked inherited hearing impairment is a group of heterogeneous disorders accounting for less than 2% of hereditary hearing loss. DFN4, a sex-linked hearing impairment associated with profound sensorineural hearing loss, has been previously mapped to Xp21.2, a region containing the DMD locus. We have identified a family from Turkey with deafness in which the disease maps to and refines the DFN4 locus. In contrast to the previous family, the crossover points are entirely within the DMD locus. Two-point lod score analysis for the markers DXS 997, DXS 1214, and DXS 1219 showed a lod score of 2.59. 5′ and 3′ crossovers were between DMD 44 and DXS 1219 and between DXS 1214 and DXS 985, respectively, suggesting that DFN4 is either an allele of DMD or a mutation in a DMD nested gene. The restriction of the DFN4 locus to DMD suggests that dystrophin may play an important role in hearing.  相似文献   

2.
Duchenne muscular dystrophy (DMD) is the most common of the human muscular dystrophies, affecting approximately 1 in 3500 boys. Most DMD patients die in their late teens or early twenties due to involvement of the diaphragm and other respiratory muscles by the disease. The primary abnormality in DMD is an absence of dystrophin, a 427 kd protein normally found at the cytoplasmic face of the muscle cell surface membrane. Based upon the predicted structure and location of the protein, it has been proposed that dystrophin plays an important role in providing mechanical reinforcement to the sarcolemmal membrane of muscle fibers. Therefore, dystrophin could help to protect muscle fibers from potentially damaging tissue stresses developed during muscle contraction. In the present paper, the nature of mechanical stresses placed upon myofibers during various forms of muscle contraction are reviewed, along with current lines of evidence supporting a critical role for dystrophin as a subsarcolemmal membrane-stabilizing protein in this setting. In addition, the implications of these findings for exercise programs and other potential forms of therapy in DMD are discussed.  相似文献   

3.
The activities of a range of phenylalaninol-related compounds on capping of concanavalin A and induction of rounding of Chinese hamster ovary tsHl cells, as well as on the fluidity of phosphatidylcholine-cholesterol (1:1) liposomes, have been examined. These compounds include phenylalaninol, histidinol, leucinol, benzyl alcohol, benzylamine, 2-phenylethanol, 2-phenylamine, 3-phenyl-1-propanol, 3-phenyl-1-propylamine, and 3-phenylpropionic acid. The results indicate a strong correlation between the capacities of these compounds to enhance fluidity and their capacities to inhibit capping of concanavalin A. The specificity of this correlation is suggested by the finding that both types of capacities are poorly correlated with the capacities of the various compounds to induce cell rounding.  相似文献   

4.
The interpretation of the majority of studies of Duchenne muscular dystrophy (DMD) has been complicated by the heterogeneous composition of the cultures used. In addition to muscle cells, muscle tissue contains adipocytes and fibroblasts and the proportion of these cell types varies, especially in disease states. To overcome this problem we developed culture conditions which permitted isolation and characterization of pure populations of clonally derived human muscle cells [1, 2]. Here we report the successful application of these methods to muscle cells from biopsies of individuals with diagnosed DMD. The normal and mutant human muscle cells were used in experiments of muscle differentiation in the same manner as cell lines. Frozen-stored cells were thawed, plated in a series of replicate plates, and allowed to differentiate under similar culture conditions. Yet, in contrast with cell lines, the cells were karyotypically normal, not altered by adaptation to long-term culture, and had a finite lifespan. We have systematically analysed specific properties of the normal and DMD muscle cells which differentiated in culture. The kinetics and extent of myoblast fusion, myotube morphology, and the accumulation and distribution of membrane acetylcholine receptors were monitored. In addition, the isozyme composition of creatine kinase and its intracellular and extracellular distribution were determined. Our results indicate that DMD muscle cells are fully capable of initiating myogenesis in culture and do not differ from normal muscle in several important parameters of differentiation.  相似文献   

5.
6.
We have previously demonstrated that OCILRP2 interaction with its ligand NKRP1f provides a co-stimulatory signal for optimal T cell proliferation and IL-2 production. Here, using RNA interference technology, we will demonstrate that silencing OCILRP2 in vivo leads to intrinsic impairment in T cell response to CD3- and CD28-cross-linking as well as antigenic stimulation. OCILRP2-silenced T cells have reduced cell proliferation and IL-2 production, which can be bypassed by PMA and ionomycin treatment. OCILRP2-silenced T cells also failed to undergo TCR capping and had impaired cytoskeleton reorganization. Moreover, in OCILRP2-silenced T cells, tyrosine phosphorylation of Lck was diminished, while tyrosine phosphorylation of linkers for activation of T cells was unchanged. Interestingly, NF-kappaB activation was also impaired as the result of OCILRP2 silencing. Together, our data strongly support a novel role for OCILRP2 C-type lectin in TCR-mediated signal transduction. The observation that OCILRP2 is involved in TCR capping and cytoskeletal organization suggests that OCILRP2-NKRP1f may facilitate lipid rafts and immunological synapse formation during T cell interaction with antigen presenting cells.  相似文献   

7.
Leucocyte adhesion to endothelial cells is a tightly regulated process involving selectins, integrins and immunoglobulin-like proteins. Cell adhesion and communication are controlled by membrane dynamics like receptor capping. Capping of surface receptors is an ubiquitous mechanism but still not well understood. Employing immunofluorescence techniques, we demonstrate that L-selectin triggering results in receptor capping of the L-selectin molecules in lymphocytes. Using pharmacological inhibitors and genetic deficient cell lines we show that this process involves intracellular signalling molecules. L-Selectin capping seems to be independent on activation of p56lck-kinase, but requires the neutral sphingomyelinase, small G proteins and the cytoskeleton. Therefore, capping of L-selectin upon stimulation might play an important role in the very early phase of lymphocyte trafficking.  相似文献   

8.
Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.  相似文献   

10.
Redistribution (capping) of normal and tumor-associated surface antigens was studied on murine and human cells by the indirect membrane immunofluorescence (MIF) technique. The capping of H-2 isoantigens was compared on normal mouse T-lymphocytes and on YAC cells, a Moloney leukemia virus (MLV) induced lymphoma. H-2 and Moloney virus induced cell surface antigen (MCSA) capping was compared on three YAC lines with different MCSA concentrations. H-2 and tumor-associated surface antigen capping was compared on two polyoma induced sarcoma lines and five methylcholanthrene induced sarcoma lines. In the human system, IgM-capping was compared on normal lymphocytes and on the Burkitt lymphoma derived Daudi line. Capping of HL-A and the Epstein-Barr virus (EBV) determined membrane antigen (MA) was compared on the Burkitt lymphoma derived line Maku and on EBV-superinfected Daudi cells. H-2 antigens on normal murine cells capped more promptly and on a larger fraction of the cell population on the various tumor cells. Surface associated IgM showed a better capping on normal lymphocytes than on Daudi cells. All tumor associated antigens except MCSA, showed good capping. MCSA was almost completely refractory to capping. Increasing concentrations of MCSA appeared to inhibit the capping of H-2 on the YAC sublines with different concentrations of MCSA. The polyoma induced ascites sarcoma (SEWA) did not cap either with regard to H-2 or the polyoma determined surface antigen.  相似文献   

11.
12.
Duchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success. Recent reports have shown that there is extensive splicing of the IGF-1 gene in muscles. The MGF isoform contains a C-terminal 24 amino acids peptide in the E domain (MGF-Ct24E) that has intrinsic properties. It can promote the proliferation while delaying the differentiation of C(2)C(12) cells. Here, we demonstrated that this synthetic peptide is a motogenic factor for human precursor myogenic cells in vitro and in vivo. Indeed, MGF-Ct24E peptide can modulate members of the fibrinolytic and metalloproteinase systems, which are implicated in the migration of myogenic cells. MGF-Ct24E peptide enhances the expression of u-PA, u-PAR and MMP-7 while reducing PAI-1 activity. Moreover, it has no effect on the gelatinases MMP-2 and -9. Those combined effects can favour cell migration. Finally, we present some results suggesting that the MGF-Ct24E peptide induces these cell responses through a mechanism that does not involve the IGF-1 receptor. Thus, this MGF-Ct24E peptide has a new pro-migratory activity on human myogenic precursor cells that may be helpful in the treatment of DMD. Those results reinforce the possibility that the IGF-1Ec isoform may produce an E domain peptide that can act as a cytokine.  相似文献   

13.
Polymorphonuclear leukocytes (PMNs) from human neonates respond less efficiently to chemotactic factor stimulation than do PMNs from adults. The biologic mechanisms underlying this developmental process are poorly understood. In previous studies, we have found that pentoxifylline, an agent report to enhance membrane deformability, increased the chemotactic response of neonatal PMNs. In the present studies, we have examined the effect of pentoxifylline on cell surface mobility and membrane fluidity by assessing fluorescent concanavalin A (Con A) capping and fluorescent polarization (FP). Baseline Con A capping was lower in the PMNs of neonates when compared to PMNs from adult controls. Colchicine, which increases capping by disrupting microtubules, exaggerated the differences between the adult and neonatal PMNs. Following exposure of neonatal PMNs to pentoxifylline, colchicine enhanced Con A capping to levels equivalent to those of colchicine-treated PMNs from adults. Employing a fluorescence polarization (FP) assay, we found the fluid state of the membrane of PMNs from neonates was significantly less than that of adult controls. Pentoxifylline alone significantly increased the fluidity of the cell membranes of neonatal PMNs while decreasing elevated basal levels of F-actin in the cell. These data suggest an intrinsic cytoskeletal difference in the PMNs of neonates that may be responsive to pharmacologic manipulation.  相似文献   

14.
Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand–receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.  相似文献   

15.
The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs). Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM), which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748) of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs). The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.  相似文献   

16.

Background

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density.Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP–P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target.

Methods and Findings

Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050) without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice.

Conclusions

These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.  相似文献   

17.
Inhibition of DNA synthesis was studied in gamma-irradiated lymphoblastoid cells from patients with Alzheimer's disease and Down's syndrome. A normal biphasic pattern of inhibition was observed over a dose range of 0-4 krad of gamma-rays in all of the cell lines. 3 out of 4 Down's and all the Alzheimer's cell lines were shown to be hypersensitive to ionizing radiation based on induced chromosomal aberrations. Increased G2 phase delay, comparable to that occurring in ataxia-telangiectasia cells, was observed for some of the cell lines, after exposure to gamma-rays. Contrary to other data in the literature these results demonstrate that radioresistant DNA synthesis is not an intrinsic feature of all disorders characterized by radiosensitivity.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a common and devastating type of childhood-onset muscular dystrophy, attributed to an X-linked defect in the gene that encodes dystrophin. Myopathy with DMD is most pronounced in the diaphragm muscle and fast-twitch limb muscles and is dependent upon susceptibility to damage, inflammatory cell infiltration, and proinflammatory signaling (nuclear factor-κB; NF-κB). Although recent papers have reawakened the notion that oxidative stress links inflammatory signaling with pathology in DMD in limb muscle, the importance of redox mechanisms had been clouded by inconsistent results from indirect scavenger approaches, including in the diaphragm muscle. Therefore, we used a novel catalytic mimetic of superoxide dismutase and catalase (EUK-134) as a direct scavenger of oxidative stress in myopathy in the diaphragm of the mdx mouse model. EUK-134 reduced 4-hydroxynonenal and total hydroperoxides, markers of oxidative stress in the mdx diaphragm. EUK-134 also attenuated positive staining of macrophages and T-cells as well as activation of NF-κB and p65 protein abundance. Moreover, EUK-134 ameliorated markers of muscle damage including internalized nuclei, variability of cross-sectional area, and type IIc fibers. Finally, impairment of contractile force was partially rescued by EUK-134 in the diaphragm of mdx mice. We conclude that oxidative stress amplifies DMD pathology in the diaphragm muscle.  相似文献   

19.
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use.  相似文献   

20.
Serum metabolite profiling in Duchenne muscular dystrophy (DMD) may enable discovery of valuable molecular markers for disease progression and treatment response. Serum samples from 51 DMD patients from a natural history study and 22 age-matched healthy volunteers were profiled using liquid chromatography coupled to mass spectrometry (LC-MS) for discovery of novel circulating serum metabolites associated with DMD. Fourteen metabolites were found significantly altered (1% false discovery rate) in their levels between DMD patients and healthy controls while adjusting for age and study site and allowing for an interaction between disease status and age. Increased metabolites included arginine, creatine and unknown compounds at m/z of 357 and 312 while decreased metabolites included creatinine, androgen derivatives and other unknown yet to be identified compounds. Furthermore, the creatine to creatinine ratio is significantly associated with disease progression in DMD patients. This ratio sharply increased with age in DMD patients while it decreased with age in healthy controls. Overall, this study yielded promising metabolic signatures that could prove useful to monitor DMD disease progression and response to therapies in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号