首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osteoblast-osteoclast relationships in bone resorption are unclear. We investigated whether osteoblasts constitutively influence osteoclast activity. We employed a serum-free co-culture system in which chicken osteoclasts and chick calvaria or, alternatively, isolated chick osteoblasts were cultured in two different compartments separated by a 0.45 micron porous membrane permeable to soluble molecules. Osteoclastic bone resorption, evaluated by release of 3H-proline from prelabeled bone fragments, was significantly enhanced by bone cells resident in the calvaria, as well as by isolated osteoblasts. Stimulation was specific, since periosteal cells, or skin fibroblasts, failed to mimic osteoblast activity. Conditioned medium from osteoblast cultures stimulated osteoclast function in a similar manner, indicating that paracrine signals, capable of crossing the porous membrane separating the two compartments, are released by the bone forming cells.  相似文献   

2.
The idea that vitamin D must function at the bone site to promote bone mineralization has long existed since its discovery as an anti-rachitic agent. However, the definite evidence for this is still lacking. In contrast, much evidence has accumulated that 1 alpha,25(OH)2D3 in involved in bone resorption. 1 alpha,25(OH)2D3 tightly regulates differentiation of osteoclast progenitors into osteoclasts. Osteoclast progenitors have been thought to belong to the monocyte-macrophage lineage. 1 alpha,25(OH)2D3 greatly stimulates differentiation and activation of mononuclear phagocytes. Recent reports have indicated that differentiation of mononuclear phagocytes into osteoclasts is strictly regulated by osteoblastic cells, the process of which is also stimulated by 1 alpha,25(OH)2D3. In the differentiation of mononuclear phagocytes into osteoclasts, the target cells for 1 alpha,25(OH)2D3 appear to be osteoblastic stromal cells. Osteoblastic cells produce several proteins such as BGP, MGP, osteopontin and the third component of complement (C3) in response to the vitamin. They appear to be somehow involved in osteoclast differentiation and functions. Thus, 1 alpha,25(OH)2D3 seems to be involved in the differentiation of osteoclast progenitors into osteoclasts directly and also by an indirect mechanism involving osteoblastic cells. The precise role of osteoblastic cells in osteoclast development has to be elucidated in the future.  相似文献   

3.
Rac-GTPase, osteoclast cytoskeleton and bone resorption.   总被引:6,自引:0,他引:6  
The members of the Rho-GTPase subfamily, Rac1 and Rac2, are intimately involved in the organization of the cytoskeleton, and the p21-activated kinases or PAKs are targets of these proteins. Rac1 and Rac2 are also essential components of NADPH oxidase, the enzyme responsible for generating free radicals. The cytoskeleton modulates the adhesion of osteoclasts to bone and its subsequent resorption. These cells contain NADPH diaphorase activity, and free radicals influence bone resorption. The influence of Rac1, Rac2 and PAK1 on the cytoskeleton, resorbing activity and NADPH diaphorase activity of disaggregated rat osteoclasts was investigated by permeabilisation with saponin and introducing specific anti-Rac1, anti-Rac2 or anti-PAK1 antibodies. Rhodamine-phalloidin stain was used to identify actin in osteoclasts cultured on plastic slides, and the bone-slice method was used to measure resorption. Saponin permeabilisation did not affect the cytoskeletal organization or bone resorption. Anti-Rac antibodies caused dose- and time-dependent cytoskeletal changes. The osteoclasts rounded up and developed retraction fibers; actin rings were disrupted and large actin dots were seen at the periphery of the cells. Osteoclast resorptive activity was depressed after incubation with the antibodies. The total area resorbed by treated cells and the mean pit area were smaller than those of controls. Anti-PAK1 antibody caused similar changes. None of the antibodies altered the NADPH diaphorase activity. Thus, Rac-GTPases are present in rat osteoclasts and are involved in the organization of the actin cytoskeleton and in resorptive activity. These effects may be mediated by PAK1 kinase, but do not influence osteoclast NADPH diaphorase activity.  相似文献   

4.
With the aim to study the mechanism of transduction of mechanical stimuli in biological ones we have realized an experimental device for the application of intermittent mechanical forces on bone specimens in vitro. The scheme of the device is reported in Fig. 1. It is constituted by a drive shaft which rotates on eccentric axis (1) supporting a longitudinal bar (2) with the load (3). The latter rests on a piston (4) only during a limited period of every shaft revolution, so that the load becomes intermittent. The bone specimen (5) is placed under the piston and the two are placed in a tube containing the culture medium. This latter is BGJ mod. Fitton-Jackson (Gibco), enriched with fetal calf serum (10%) and ascorbic acid (70 microliters/ml). Right metatarsi from 18-day-old rats were removed aseptically and placed under the piston for 2-6 days after resection of both ends. The homotypic ones, unloaded, were placed in 30 mm Petri dishes, and used as a control. The incubator environment was 5% CO2 in air (A group), or enriched with O2 (25-35%) (B group). At the end of the experimental period the bone specimens were fixed in 4% formalin buffered and treated for conventional histologic methods. In the A group most of the osteocytic lacunae were empty. The osteoblasts disappeared already at the 2nd day; the periosteal fibroblast dedifferentiated and multiplied. The deposition or calcification of osteoid were completely lacking. The application of mechanical load promoted deposition of granular degenerative material around the bone, and the periosteal cells, well differentiated, were surrounded by metachromatic material, which resembles cartilage matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Tumour cells produce systemic or local factors which can stimulate osteoclast development and activity leading to increased bone resorption. The clinical consequences are bone pain, fractures and hypercalcaemia. Inhibitors of osteoclast-mediated bone resorption, such as the bisphosphonates, are now the treatment of choice for tumour-induced hypercalcaemia. Recent evidence indicates that these compounds, especially the newer ones, reduce skeletal morbidity in patients with metastatic bone disease and improve their quality of life. Better understanding of the mechanisms underlying tumour-induced bone resorption and development of more potent and less toxic bisphosphonates will lead to improved management of patients with malignant diseases involving the skeleton.  相似文献   

6.
7.
Osteoclastic bone resorption is modulated in humans by powerful osteotropic factors which are generated in the immediate vicinity of bone resorbing surfaces. These factors are released from marrow mononuclear cells and from some bone cells, and some are actually incorporated into the noncollagenous bone matrix from where they are released when bone is resorbed. They are likely important not only in the control of normal bone remodeling, but also in a number of disease states associated with disordered remodeling. In this review, current concepts of the effects of these factors on cells in the osteoclast lineage will be discussed.  相似文献   

8.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

9.
Oocyte resorption in the ovaries of sexually mature carp, which did not spawn, was investigated using a method of sampling ovaries in vivo . A 2-year study revealed that a portion of the oocytes had undergone a slow resorption while the basic mass of the ovaries, throughout the experiment, consisted of the oocytes similar to those of stage IV of sexual maturity. At the same time no growth of the oocytes of the earlier maturation stages was found. The condition of the ovaries in the females studied indicated their complete infertility, at least for three successive spawning periods.  相似文献   

10.
The article deals with the clinical value of monitoring of serum markers of osteoresorption (ICTP) and bone formation (PICP) in multiple myeloma. In a group of patients treated by conventional chemotherapy and group of patients treated by high dose chemotherapy with autologous peripheral blood stemm cell transplantation (APBSTC).  相似文献   

11.
Immunohistochemical studies have revealed an extensive network of nerve fibers in the vicinity and within the skeleton, not only in the periosteum of bone but also in cortical and trabecular bone as well as in the bone marrow. Phenotyping of the skeletal nerve fibers have demonstrated the expression of a restrictive panel of different signalling molecules including neuropeptides, neurotransmitters and neurotrophins. In this review, the presence of receptors for the neuropeptides vasoactive intestinal peptide, calcitonin gene-related peptide and substance P on osteoblasts and osteoclasts and the capacity of these receptors to regulate bone formation, osteoclast formation and activity are described. These findings, together with data obtained by chemically and surgically targeted nerve deletion and observations made in paraplegic patients, strongly suggest that neuro-osteogenic interactions play an important role in skeletal function.  相似文献   

12.
There is increasing evidence that calpain contributes to the reorganization of the cytoskeleton in the integrin-mediated signaling pathway. Osteoclastic bone resorption requires cell-matrix contact, an event mediated by integrin alphavbeta3, and subsequent cytoskeletal reorganization to form characteristic membrane domains such as the sealing zone and ruffled border. In this study, therefore, we investigated whether calpain is involved in osteoclastic bone resorption. Membrane-permeable calpain inhibitors suppress the resorption activity of human osteoclasts, but an impermeable inhibitor does not. Upon the attachment of osteoclasts to bone, micro-calpain is translocated from the cytosolic to the cytoskeletal fraction and is autolytically activated. Both the activation of micro-calpain and the formation of actin-rings, the cytoskeletal structures essential for bone resorption, are inhibited by membrane-permeable calpain inhibitors. The activated micro-calpain in osteoclasts selectively cleaves talin, which links the matrix-recognizing integrin to the actin cytoskeleton. These findings suggest that calpain is a regulator of the bone resorption activity of osteoclasts through reorganization of the cytoskeleton related to actin-ring formation.  相似文献   

13.
Stimulation of bone resorption by various prostaglandins in organ culture.   总被引:5,自引:0,他引:5  
The ability of E, F, A and B prostaglandins to stimulate bone resorption was demonstrated in organ culture. All of the compounds tested were able to increase the release of previously incorporated 45Ca from fetal rat bone by 60 to 135 per cent at maximally effective doses, but prostaglandins of the E series were 10- to 100- fold more potent than F, A or B prostaglandins. Compounds with two double bonds in the side chain were usually more potent than those with one double bond. PGE2 stimulation of bone resorption increased linearly with the logarithm of the medium concentration over the range of 10(-9)M to 10(-5)M, then decreased at higher concentrations. PGE2 stimulated bone resorption more slowly than did parathyroid hormone but caused complete resorption after six days in the culture system. Equilibrium dialysis studies showed no significant binding of F, and 16-34% binding of E and A prostaglandins to bovine serum albumin, which was present in the medium at 1 mg/ml. These differences in albumin binding could not account for differences in potency.  相似文献   

14.
Okadaic acid (OA), a potent inhibitor of protein phosphatase type 1 and protein phosphatase type 2A was studied for its effect on bone resorption in neonatal mouse calvaria. OA (0.01 to 1000 ng/ml) had no effect on the basal bone resorption rate, except at 1000 ng/ml, were a small inhibitory effect was observed. Resorption stimulated by parathyroid hormone (10(-8) M) was abolished in the presence of OA, half maximal inhibition being observed at 1 ng/ml. However, at 50 ng/ml or higher, OA significantly increased lactate dehydrogenase activity in the medium, indicating a cytotoxic effect at these concentrations. Similar inhibitory effects were observed when bone resorption was stimulated by 1,25-dihydroxycholecalciferol (10(-8) M) or prostaglandin E2 (10(-6) M). From this it is concluded that protein dephosphorylation may represent an important regulatory mechanism in the bone resorption process.  相似文献   

15.
16.
Human cathepsin K, matrix metalloproteinase 9, and alpha(V)beta(3) integrin are the key regulators in osteoclast-mediated bone resorption. In this paper, we found natural inhibitors 1-10 for them by enzyme inhibition assays. Inhibitors 1-7, 8-9, and 10 are novel inhibitors of human cathepsin K, matrix metalloproteinase 9, and alpha(V)beta(3), respectively.  相似文献   

17.
Effects of space flight on bone formation and resorption.   总被引:2,自引:0,他引:2  
Samples of femurs and tibiae of male Wistar rats subjected to a 13 day space-flight on the biosatellite Cosmos 1887--were investigated and compared with vivarium and synchronous controls or immobilized rats, using histological and histomorphometric methods. 1. After flight in the metaphysis of bones the density and volume of the spongious trabeculae diminished significantly indicated by the Sv and Vv histomorphometric values and histological data comparing to the controls. In the diaphysis, the density of trabeculae decreased too. 2. In the flight group significant suppression of bone formation was determined by histological and histomorphometric (decrease of the OS, OB and OBI values) methods. 3. In the flight group according to the histological pictures the signs of bone resorption (increase of Hoswship's lacunae, osteoclastic activity, structural rarefication of spongious and cortical bones, osteon disintegration, osteocytic osteolysis) were revealed, which was substantiated by the histomorphometric results (increase of osteoclastic index: OCI). 4. Significant differences between flight and immobilized groups were not determined, except the osteoid value, which was increased in the case of immobilization. 5. Some histomorphometric values related to bone formation of synchronous control group showed close relationship rather to the flight group than to the vivarium control group.  相似文献   

18.
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.  相似文献   

19.
To date, mesenchymal cells have only been associated with bone resorption indirectly, and it has been hypothesized that the degradation of bone is associated exclusively with specific functions of osteoclasts. Here we show, in aseptic prosthesis loosening, that aggressive fibroblasts at the bone surface actively contribute to bone resorption and that this is independent of osteoclasts. In two separate models (a severe combined immunodeficient mouse coimplantation model and a dentin pit formation assay), these cells produce signs of bone resorption that are similar to those in early osteoclastic resorption. In an animal model of aseptic prosthesis loosening (i.e. intracranially self-stimulated rats), it is shown that these fibroblasts acquire their ability to degrade bone early on in their differentiation. Upon stimulation, such fibroblasts readily release acidic components that lower the pH of their pericellular milieu. Through the use of specific inhibitors, pericellular acidification is shown to involve the action of vacuolar type ATPases. Although fibroblasts, as mesenchymal derived cells, are thought to be incapable of resorbing bone, the present study provides the first evidence to challenge this widely held belief. It is demonstrated that fibroblast-like cells, under pathological conditions, may not only enhance but also actively contribute to bone resorption. These cells should therefore be considered novel therapeutic targets in the treatment of bone destructive disorders.  相似文献   

20.
Leupeptin, antipain, tosyl-lysylchloromethane (Tos-Lys-CH2Cl) and benzyloxy-carbonylphenylalanylalanyldiazomethane (Z-Phe-Ala-CHN2) inhibit reversibly the resorption induced by parathyroid hormone or heparin in cultured mouse bones. Leupeptin and antipain do not affect collagenase production and activity or the enhanced secretion of beta-glucuronidase induced by the bone-resorbing agents. They might thus act by a direct (extracellular?) inhibition of lysosomal thiol proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号