首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Whole mounts, cryosections, and isolated cortices of unfertilized sea urchin eggs were probed with fluorescent phalloidin, anti-actin and anti-egg spectrin antibodies to investigate the organizational state of the cortically associated actin-membrane cytoskeleton. Filamentous actin and egg spectrin were localized to the plasma membrane, within microvillar and nonmicrovillar domains. The nonmicrovillar filamentous actin was located immediately subjacent to the microvilli forming an extensive interconnecting network along the inner surface of the plasma membrane. The organization of this filamentous actin network precisely correlated with the positioning of the underlying cortical granules. The cortical cytoplasm did not contain any detectable filamentous actin, but instead contained a sequestered domain of nonfilamentous actin. Spectrin was localized to the cytoplasmic surface of the plasma membrane with concentrated foci co-localized with the filamentous actin present in microvilli. Spectrin was also observed to coat the surfaces of cortical granules as well as other populations of intracellular vesicles. On the basis of light microscopic morphology, intracellular distribution, and co-isolation with the egg cortex, some of these spectrin-coated organelles represent acidic vesicles. Identification of an elaborate organization of inter-related domains of actin (filamentous and nonfilamentous) and spectrin forming the cortical membrane cytoskeleton provides insight into the fundamental mechanisms for early membrane restructuring during embryogenesis. Additionally, the localization of spectrin to the surface of intracellular vesicles is indicative of its newly identified functional roles in membrane trafficking, membrane biogenesis and cellular differentiation.  相似文献   

2.
Using indirect immunofluorescence microscopy on semithin cryosections of maturing ovarian tissue, eggs, and developing embryos, we have mapped the cellular distribution and dynamic redistribution of spectrin in oogenesis and early embryogenesis. During oogenesis, spectrin is initially found in the cortex of oogonia and previtellogenic oocytes, and later accumulates in the cytoplasm of vitellogenic oocytes on the surfaces of cortical granules, pigment granules/acidic vesicles, and yolk platelets. Following egg activation, spectrin undergoes a rapid redistribution coincident with three major developmental events including: (1) restructuring of the cell surface, (2) translocation of pigment granules/acidic vesicles to the cortex during the first cell cycle, and (3) amplification of the embryo's surface during the rapid cleavage phase of early embryogenesis. The synthesis and storage of spectrin during oogenesis appears to prime the egg with a preestablished pool of membrane-cytoskeletal precursor for use during embryogenesis. Results from this study support the hypothesis that spectrin may function as a key integrator and modulator of multiple membrane-cytoskeletal functions during embryonic growth and cellular differentiation.  相似文献   

3.
The three-dimensional organization of cortices isolated from unfertilized and fertilized Strongylocentrotus purpuratus eggs has been examined by several techniques of light and electron microscopy. It has been found that when moderate shear forces are used, the isolated unfertilized egg cortex, in addition to cortical granules, contains acidic vesicles and an elaborate network of rough endoplasmic reticulum. This network provides a physical link between the cell surface and several kinds of cytoplasmic organelles (mitochondria, yolk granules, acidic vesicles) which are retained as part of the isolated cortex when gentle shear forces are applied. Furthermore a good visualization of actin in the cortex is provided: it is present as short filaments and mostly within the stubby microvilli of the egg. Finally, it has been noted that plaques exist on the inside face of the plasma membrane ready to assemble into typical clathrin coats that prefigure the burst of coated vesicle endocytosis that takes place after fertilization. The cortex isolated soon after fertilization is shown to contain coated pits and a scaffolding of filaments (mostly actin) in which many acidic vesicles are embedded.  相似文献   

4.
A membrane fraction has been prepared by sucrose density gradient fractionation of purified cortical secretory vesicles from the eggs of the sea urchin Strongylocentrotus purpuratus. The purified cortical vesicle membrane fraction has a phospholipid to protein ratio of 1.76 and exhibits a morphology typical of biological membranes as seen by electron microscopy. The protein composition of the purified membranes was analyzed by SDS-polyacrylamide gel electrophoresis and shown to be distinct from that of eggs, cell surface complex, cortical vesicles, fertilization product, and yolk platelets. Alkaline extraction (pH 11.0) of peripheral membrane proteins increased the phospholipid to protein ratio to 2.55 and removed several polypeptides. Immunoblot analysis of the isolated cortical vesicle membrane fraction revealed low levels of contamination with two major cortical vesicle content proteins. Fractions enriched in egg plasma membranes and yolk platelet membranes also have been isolated and compared with the cortical vesicle membranes by SDS-polyacrylamide gel electrophoresis. The protein compositions of the three membrane fractions were found to contain very little overlap, indicating that the cortical vesicle membrane preparation is relatively free of contamination from these likely noncortical vesicle sources of membrane. Both the plasma membrane and cortical vesicle membrane samples were found by immunoblotting to contain actin.  相似文献   

5.
In a previous report (Parasitology 116 (1998) 525) we isolated and characterized Boophilus Yolk pro-Cathepsin (BYC), an aspartic proteinase precursor from the eggs of the hard tick. The present study was designed to characterize the function of BYC in the consumption of vitellin (VT), the major yolk protein, during embryogenesis. Both purified BYC and total egg homogenate proteolytic activity showed a similar pH dependence profile with an acidic optimum. Purified BYC presented higher activity against VT as a substrate when compared to other proteins. The VT degradation pattern observed in vitro also showed a similar profile to that observed in vivo. Co-localization of BYC and acidic cortical yolk granules was performed by immunocytochemistry and confocal microscopy. Proton-pumping activity of yolk granules in vitro was higher in eggs collected 4 day after oviposition than in newly laid eggs. Taken together, our data suggest that BYC plays a major role in the degradation of VT and that its activity is controlled by acidification of yolk platelets localized at the cortical cytoplasm of the developing Boophilus microplus egg.  相似文献   

6.
This study compares by immunogold labeling the ultrastructural localization of a hexameric 22S glycoprotein, called toposome, with that of hyalin in unfertilized eggs and cells of hatched sea urchin blastulae. Nearly all hyalin is present in the electron translucent compartment of the cortical granules and in the translucent non-cortical pigment granules. In the blastula both of these intracellular stores have vanished and hyalin now forms a broad band below the apical lamina. By contrast, in the egg toposomes are present on the surface, as well as stored in yolk granules and in the electron dense lamellar compartment of the cortical granules. In the hatched blastula, toposomes that have been modified by limited proteolysis in the yolk granules, are associated with the plasma membranes of all newly formed cells, while the toposomes originating from the cortical granules have been incorporated as unmodified 160 kDa polypeptides into an extracellular double layer enveloping the embryo on the outside of the hyaline layer. From evidence discussed in detail, we conclude that the extracellular toposomes rivet the apical lamina to the surface and underlying cytoskeleton of the microvilli, while the modified toposomes from the yolk granules are responsible for position specific intercellular adhesion as they are released to the surface of newly formed cells. We propose that all the material stored in yolk granules is utilized for the assembly of new membranes.  相似文献   

7.
We have examined the subequatorial accumulation of pigment granules (the so-called 'pigment band') in the egg of the sea urchin Paracentrotus lividus, which constitutes an unambiguous marker of animal-vegetal polarity. Most of the reddish pigment granules are situated at the periphery of the egg. They exhibit occasional saltatory movements and can aggregate into large patches. Pigment granules are retained as a band in the isolated cortex when the egg surface complex is isolated by shearing eggs attached to polylysine-coated surfaces with calcium-free isotonic solutions. Pigment granules remain as the main vesicular component of fertilized egg cortices or of unfertilized egg cortices perfused with calcium to provoke cortical granule exocytosis. They may be anchored to the isolated cortex through associations with the plasma membrane and with an extensive subsurface network of rough endoplasmic reticulum (rough ER). Pigment granules contain antimonate-precipitable calcium and, in this respect and many others, resemble acidic vesicles recently identified in the cortex of unpigmented sea urchin eggs. We discuss the similarities observed between granules and acidic vesicles in various urchin egg species and their possible functions.  相似文献   

8.
We investigated the effect of the phorbol ester TPA (12-O-tetradecanoyl phorbol 13-acetate) on the egg morphology of the sea urchin Arbacia lixula. Our study indicates that TPA alters the cortical region of the egg: the pigment granules migrate toward the surface, while cortical granules detach from the plasma membrane. Cortical granule exocytosis did not occur but the endocytosis process was turned on. Prolonged treatment of the eggs by TPA partially inhibits the cortical granule exocytosis normally triggered by fertilization. We discuss the effects of TPA in terms of its interaction with the Ca2+ pool and cytoskeletal structures. In order to discern the respective roles of pHi and protein kinase C activity in endocytosis process activation, we compared the ultrastructural effects of TPA and ammonia. Finally, the role of pigment vesicles in egg metabolism activation is discussed.  相似文献   

9.
Recent evidence that polyphosphoinositides regulate the function of the actin-modulating protein gelsolin in vitro raises the possibility that gelsolin interacts with cell membranes. This paper reports ultrastructural immunohistochemical data revealing that gelsolin molecules localize with plasma and intracellular membranes, including rough endoplasmic reticulum, cortical vesicles and mitochondria of macrophages, and blood platelets. Anti-gelsolin gold also labeled the surface and interior of secondary lysosomes presumably representing plasma gelsolin ingested by these cells from the lung surface by endocytosis. Gelsolin molecules, visualized with colloidal gold in replicas of the cytoplasmic side of the substrate-adherent plasma membrane of mechanically unroofed and rapidly frozen and freeze-dried macrophages, associated with the ends of short actin filaments sitting on the cytoplasmic membrane surface. A generalized distribution of gelsolin molecules in thin sections of resting platelets rapidly became peripheral, and plasmalemma association increased following thrombin stimulation. At later times the distribution reverted to the cytoplasmic distribution of resting cells. These findings provide the first evidence for gelsolin binding to actin filament ends in cells and indicate that gelsolin functions in both cytoplasmic and membrane domains.  相似文献   

10.
The localization of acid phosphatase (E.C. 3.1.3.2), inorganic trimetaphosphatase (E.C. 3.6.1.2), and aryl sulfatase (E.C. 3.1.6.1) in the cortex of unactivated and activated eggs of Brachydanio was examined by ultrastructural cytochemistry. Using a lead capture method, activity for all three acid hydrolases was demonstrated in organelles of the cortex before and after egg activation. Acid phosphatase (AcPase) reaction product was consistently present in primary lysosomes, secondary lysosomes, multivesicular bodies, and yolk bodies. AcPase activity was absent from mitochondria, profiles of the endoplasmic reticulum, coated pits of exocytosed cortical granules, and coated vesicles. Although most cortical granules of the mature, unactivated egg were unreactive for this enzyme, a few showed AcPase reaction product. It is not clear whether the AcPase-positive granules might be an immature form of cortical granules or a subpopulation of these organelles with lysosomal properties. Most cisternae of the Golgi apparatus did not stain for AcPase; however, reaction product was occasionally localized in a single cisterna as well as several small vesicles at the inner face of the Golgi. The intensity of the reaction product and the pattern of distribution of trimetaphosphatase (Tm-Pase) activity was very similar to that of AcPase. However, TmPase was never observed in cortical granules. Cortices of unactivated and activated eggs showed less overall aryl sulfatase (ArSase) activity when compared with AcPase and TmPase. The presence of ArSase reaction product in lysosomes and multivesicular bodies confirmed the acid hydrolytic nature of these organelles. AcPase and TmPase, and to a lesser extent ArSase, are adequate markers of a cortical lysosomal system in the danio egg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The fertilized sea urchin egg is invested by the hyaline layer, a thick extracellular coat which is necessary for normal development. On the basis of ultrastructural studies and the fact that hyalin is released during the time of the cortical reaction, it has been generally accepted that hyalin is derived from the cortical granules. However, this has never been proven definitely, and recently, it has been reported that hyalin is a membrane and/or cell surface protein. To determine where hyalin is stored, we carried out an ultrastructural immunocytochemical localization of hyalin in the unfertilized egg. Hyalin purified from isolated hyaline layers was used to immunize rabbits. Antisera so obtained were shown to be hyalin specific following absorption with a combination of sea urchin proteins. Immunocytochemical localizations were carried out on sections of Epon-embedded material using protein A-coated gold particles as an antibody marker. Our results demonstrate that, prior to fertilization, hyalin is stored in the homogeneous component of the cortical granule in Strongylocentrotus droebachiensis and Strongylocentrotus purpuratus. Labeling of small cortical vesicles in both unfertilized and fertilized eggs, suggests that these vesicles may contain a secondary reservoir of hyalin.  相似文献   

12.
Recent studies from this laboratory have shown that an antigen recognized by a monoclonal antibody (MAb 1223) displays a bimodal distribution of expression in development of the embryo of Strongylocentrotus purpuratus. This molecule is specifically localized to the primary mesenchyme cells of the embryo, but is also found within the egg. In the current study, immunoelectron microscopy was used to determine the subcellular distribution of the antigen and to determine its fate during early stages of development of the embryo. In eggs, the epitope recognized by MAb 1223 was localized to the cortical vesicles. Immunoblot analysis of an isolated cell surface complex (CSC) that contained the cortical vesicles revealed the presence of a 130-kDa protein, as well as immunoreactive components of higher molecular weight. Upon fertilization, the antigen was exocytosed from the cortical vesicles and became associated with the hyaline layer, the fertilization envelope, and the plasma membrane. Subsequently, the epitope could be detected within small vesicles and yolk platelets. By 60 min postfertilization, the amount of epitope detected intracellularly or in the perivitelline compartment was greatly reduced. At later stages of development, when formation of the embryonic skeleton occurred, the 1223 antigen was principally localized to the Golgi complex and to the syncytial cell surface of the primary mesenchyme cells. Thus, the results of this study suggest that in S. purpuratus the 1223 antigen is stored and secreted from the cortical vesicles of the egg, degraded after fertilization, and then later expressed on the surface of the primary mesenchyme cells.  相似文献   

13.
Activation of the teleost (Brachydanio) fish egg includes the exocytosis of cortical granules, the construction of a mosaic surface consisting of the unfertilized egg plasma membrane and the limiting membranes of the cortical granules, and the appearance of coated and smooth vesicles in the cytoplasm (Donovan and Hart, '82). Unfertilized and activated eggs were incubated in selected extracellular tracers to (1) determine experimentally if cortical granule exocytosis was coupled with the endocytosis of membrane during the cortical reaction, and (2) establish the intracellular pathway(s) by which internalized vesicles were processed. Unfertilized eggs incubated in dechlorinated tap water or Fish Ringer's solution containing either horseradish peroxidase (HRP; 10 mg/ml), native ferritin (12.5 mg/ml), or cationized ferritin (12.5 mg/ml) were activated as judged by cortical granule breakdown and elevation of the chorion. Cells treated with HRP and native ferritin exhibited a delay in cortical granule exocytosis when compared with water-activated eggs lacking the tracer. Each tracer was internalized through the formation of a coated vesicle from a coated pit. Since coated pits appeared to be topographically restricted to the perigranular membrane domain of the mosaic egg surface, their labeling, particularly with cationized ferritin, strongly suggested that the retrieved membrane was of cortical granule origin. Cationized ferritin and concanavalin A (Con A) coupled with either hemocyanin or ferritin labeled the surface of the unactivated egg and both domains of the mosaic egg surface. Transformation of the deep evacuated cortical granule crypt into later profiles of exocytosis was accompanied by increased Con A binding. Within activated egg cortices, HRP reaction product, native ferritin, and cationized ferritin were routinely localized in smooth vesicles, multivesicular bodies, and autophagic vacuoles. Occasionally, each tracer was found in small coated vesicles adjacent to the Golgi and within Golgi cisternae. The intracellular distribution of HRP, native ferritin, and cationized ferritin suggests that internalized membrane is primarily processed by organelles of the lysosomal compartment. A second and less significant pathway is the Golgi complex.  相似文献   

14.
The localization and characteristics of yolk platelet lectins (YLs) in Xenopus laevis oocytes were studied with antiserum against cortical granule lectins (CGLs) as a probe. In oocytes at stages I, II and III-IV, specific, immunofluorescent staining for the lectins was observed on the cortical cytoplasm extending about 2, 4 and 20 μm, respectively, from the egg surface. In stage III-IV oocytes, the superficial layer of the yolk platelets was also stained. The cortical cytoplasm included cortical granules, coated pits, coated vesicles, multivesicular bodies and primordial yolk platelets. The YLs were incorporated into the oocytes by endocytosis as demonstrated using gold-labeled YLs. On PAGE, native YLs gave two bands of CGL-like proteins and proteins that appeared as a single diffuse band. The YLs and the CGLs shared antigenicity and hemagglutination activity specific to D-galactoside residues. However, the proteins of the diffuse band had little or no activity for either hemagglutination or jelly-precipitation, suggesting that they were monomers with a single reactive site. These results indicate that the YLs are supplied to the oocytes, presumably from extracellular sources, polymerized to CGL-like molecules in the cortical cytoplasm and accumulated in the superficial layer of the yolk platelets.  相似文献   

15.
Scanning microscopy and transmission electron microscopy of sectioned specimens and freeze-fracture replicas revealed the presence of slightly elevated regions, approximately one-fourth to one-half the diameter of microvilli, which were situated along the surface of unfertilized Arbacia eggs. These modifications of the surface of the egg were observed in areas occupied by cortical granules and were greatly reduced in number following the cortical granule reaction. Few such modifications were present in immature and urethane-treated ova, in which cortical granules were located in regions of the egg other than the cortex. Freeze-fracture replicas of unfertilized eggs revealed a significantly higher density of intramembranous particles within the plasmalemma when compared to replicas of the membrane surrounding cortical granules. Areas characteristic of the cortical granule membrane, i.e., sparsely laden with particles, were not observed within the plasmalemma of the fertilized egg. Hence, following its fusion with the egg plasma membrane there is a dramatic reorganization in particle distribution of the membrane derived from cortical granules.  相似文献   

16.
The sequence and timing of morphological changes during envelope formation was followed in diapause eggs of Pontella mediterranea (Crustacea, Copepoda). The multilayer coat enveloping these eggs resulted from the exocytosis of 4 types of cortical vesicles that sequentially released their contents in the perivitelline space. These included small high-density vesicles (hDV) with electron-dense material, vesicles (V) with dense ring granules and a uniform matrix contained within the same compartment, large high-density (HDV) vesicles, and large moderately dense (MDV) vesicles. All of these cortical vesicles were present in newly spawned, fertilized eggs. Their exocytosis resulted from egg activation. One of these cortical vesicles (V) was similar in morphology to the intracisternal granules precursors of endogenous yolk. Intracisternal granules, characteristic of previtellogenic oocytes of many crustaceans, were present in previtellogenic oocytes of P. mediterranea but disappeared in later stages of oocyte development once yolk formation was completed. We discuss the role of cortical vesicles in the formation of the complex extracellular coat enveloping copepod diapause eggs.  相似文献   

17.
Summary We have examined the cortex of the teleost (Brachydanio rerio) egg before and during exocytosis of cortical granules by scanning, transmission, and freeze-fracture electron microscopy. In the unactivated egg, the P-face of the plasma membrane exhibits a random distribution of intramembranous particles, showing a density of 959/m2 and an average diameter of 8 nm. Particles over P- and E-faces of the membranes of cortical granules are substantially larger and display a significantly lower density. An anastomosing cortical endoplasmic reticulum forms close associations with both the plasma membrane of the egg and the membranes of cortical granules. Exocytosis begins with cortical granules pushing up beneath the plasma membrane to form domeshaped swellings, coupled with an apparent clearing of particles from the site of contact between the apposed membranes. A depression in the particle-free plasma membrane appears to mark sites of fusion and pore formation between cortical granules and plasma membranes. Profiles of exocytotic vesicles undergo a predictable sequence of morphological change, but maintain their identity in the egg surface during this transformation. Coated vesicles form at sites of cortical granule breakdown. Differences in particle density between cortical granules and egg plasma membranes persist during transformation of the exocytotic profiles. This suggests that constituents of the 2 membrane domains remain segregated and do not intermix rapidly, lending support to the view that the process of membrane retrieval is selective (i.e., cortical granule membrane is removed).  相似文献   

18.
An accumulation of insoluble, finely granular material has been observed under the pigmented surface of Xenopus eggs by a specialized "dry fracture" technique and scanning electron microscopy. Cortical granules and pigment granules can be recognized with the techniques and can be seen to be embedded in the material. Thin sections show that the region also contains mitochondria and membranous vesicles or reticula. Yolk platelets are largely excluded from the heaviest accumulations of the material. The substance is most dense just under the cortex and grades off gradually into the more diffuse, yolk-containing network of the endoplasm. The accumulation of material is much thicker in the animal hemisphere of the egg than in the vegetal hemisphere, and the pigment embedded in it defines the pigmented area of the animal hemisphere. In the pigmented area the material excludes yolk for a thickness of 3-7+ microns from the surface. In the vegetal hemisphere there is no such accumulation and yolk platelets can be found almost touching the plasmalemma. Cortical contractions have been experimentally induced in eggs. Their relative strength correlates with the relative thickness of the finely granular, subcortical material. During contraction the material accumulates to much greater thicknesses, excluding yolk from thicknesses of 15-30+ microns from the surface. The contracting entity is, or is in, the finely granular material. Injection of cytochalasins into the eggs inhibits cleavage furrow operation but does not inhibit the induced cortical contractions. The thus do not seem to be dependent on actin microfilamentogenesis as is the operation of the contractile ring of the cleavage furrow. The differential sensitivity to cytochalasins of the contractile ring and the system responding in the induced cortical contractions, suggests a two-component system for cortical contractions in the egg. A model is presented which accommodates the available data.  相似文献   

19.
Sea urchin (Arbacia punctulata) eggs and zygotes were treated with filipin in an effort to examine changes in membrane sterols at fertilization. The plasma membrane of treated unfertilized eggs possessed numerous filipin/sterol complexes, while fewer complexes were associated with membranes delimiting cortical granules, demonstrating that the plasmalemma is relatively rich in β-hydroxysterols in comparison to cortical granule membrane. Following fusion with the plasmalemma, membrane formerly delimiting cortical granules underwent a dramatic alteration in sterol composition, as indicated by a rapid increase in the number of filipin/sterol complexes. In contrast, portions of the zygote plasma membrane, derived from the plasmalemma of the unfertilized egg, displayed little or no change in filipin/sterol composition. Other than regions of the plasma membrane engaged in endocytosis, the plasmalemma of the zygote possessed a homogeneous distribution of filipin/sterol complexes and appeared similar to that of the unfertilized egg. These results demonstrate that following its fusion with the egg plasmalemma, membranes, formerly delimiting cortical granules, undergo a dramatic alteration in sterol composition. Changes in the localization of filipin/sterol complexes are discussed in reference to alterations in egg plasmalemmal function at fertilization.  相似文献   

20.
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号