首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 150 毫秒
1.
目的建立速率比浊法准确检测ACYW135群脑膜炎球菌结合疫苗(group ACYW135 meningococcal conjugate vaccine)的各群多糖含量。方法制备多糖参考品和抗血清,建立检测ACYW135群脑膜炎球菌结合疫苗各群多糖含量的速率比浊法,对建立的方法进行验证及初步应用。结果①建立的方法具备高度的特异性,各群血清仅与本群多糖抗原发生特异性反应,与非本群多糖抗原无交叉反应;②在质量浓度为0.5~5.0μg/mL多糖参考品检测区间线性良好,相关系数r>0.98;③各群血清的最低检测限均低于质量浓度为0.35μg/mL;④批内和批间变异系数(CV)值分别为0.83%~5.34%和2.33%~13.88%,加样回收率为90.5%~118.4%,精密度和准确度均符合常规质量控制要求;⑤初步应用结果显示,建立的方法可准确检测疫苗的各群多糖含量,且与火箭电泳法检测结果差异无统计学意义(P>0.05)。结论建立的方法简便快捷、灵敏准确、自动化程度高,可有效检测ACYW135群脑膜炎球菌结合疫苗的各群多糖含量。  相似文献   

2.
目的对火箭电泳法用于检测ACYW135群脑膜炎球菌多糖疫苗的多糖含量和多糖分子大小进行验证。方法用化学法和火箭电泳法分别检测ACYW135群脑膜炎球菌多糖疫苗的多糖含量和多糖分子大小,统计学分析两种方法的检测结果。结果两种方法的检测结果差异无统计学意义。结论火箭电泳法可以用于检测ACYW135群脑膜炎球菌多糖疫苗的多糖含量和多糖分子大小。  相似文献   

3.
目的评价ACYW135群脑膜炎球菌多糖疫苗在昆明健康人群接种的免疫原性,为流脑防治策略提供依据。方法 2010年对昆明市2岁!3、岁!、4岁!、5岁!、6岁!、10岁!、≥15岁共7个年龄组分层随机抽取筛选出654名健康人,分别采集免前和免后1个月血清。用微量杀菌力试验(TTC法)分别检测血清中抗A、C、Y和W135群脑膜炎球菌杀菌抗体的水平。结果免后1个月抗A、C、Y和W135群脑膜炎球菌的杀菌抗体阳转率分别为96.99%、96.37%、88.43%和87.07%,抗A、C、Y和W135群膜炎球菌血清的杀菌抗体几何平均滴度(GMT)分别为1∶297.991、∶195.80、1∶72.74和1∶45.95。结论 ACYW135群脑膜炎球菌多糖疫苗在≥2岁以上的健康人群中有较好的免疫原性。  相似文献   

4.
目的评价ACYW135群脑膜炎球菌多糖疫苗在2~59岁健康人群中的免疫原性。方法 2~59岁健康人群接种者随机抽样(n=60),接种一剂四价脑膜炎球菌多糖疫苗。采集接种前和接种后1个月血清,采用体外杀菌试验(Serum bactericidal assay,SBA)检测血清中抗A、C、Y、W135群脑膜炎球菌的血清杀菌滴度。结果免疫前、后血清抗A群脑膜炎球菌的血清杀菌滴度GMTs(95%CI)分别为1241(736,2091)和7559(5520,10351)(P<0.05);抗C群脑膜炎球菌的血清杀菌滴度GMTs(95%CI)分别为4(9,21)和4787(2947,7775)(P<0.05);抗W135群脑膜炎球菌的血清杀菌滴度GMTs(95%CI)分别为16(9,28)和368(162,883)(P<0.05);抗Y群脑膜炎球菌的血清杀菌滴度GMTs(95%CI)分别为120(58,246)和1373(687,2745)(P<0.05)。免疫前和免疫后血清抗A群脑膜炎球菌的杀菌滴度≥128的比例分别为87(77.4,95.1)%和100(83.2,100)%;抗C群脑膜炎球菌的比例分别为17(8.3,28.5)%和97(88.5,99.6)%;抗W135群脑膜炎球菌的比例分别为13(5.9,24.6)%和68(55.0,79.7)%;抗Y群脑膜炎球菌的比例分别为57(43.2,69.4)%和85(73.4,92.9)%。免疫后较免疫前抗A群、C群、W135群和Y群脑膜炎球菌杀菌抗体滴度≥4倍升高的比例分别为50(27.2,72.8)%、97(88.5,99.6)%、62(43.2,73.9)%和55(41.6,67.9)%。结论虽然免疫前人群由于地方和国家免疫计划的实施已具有较高水平的抗A群脑膜炎球菌的血清杀菌滴度,但接种ACYW135群脑膜炎球菌多糖疫苗后可以使其保护水平进一步提高,并使人群对C群、W135群和Y群脑膜炎球菌的低水平杀菌抗体滴度均显著升高达到保护水平,证明ACYW135群脑膜炎球菌多糖疫苗在2~59岁健康人群中具有比较好的免疫原性。  相似文献   

5.
A+C群脑膜炎球菌多糖疫苗稳定性研究   总被引:3,自引:1,他引:2  
为确定A C群脑膜炎球菌多糖疫苗有效期。对该疫苗在不同储藏温度下的稳定性进行了系统研究,将C群多糖抗原放置在37℃,A C群多糖疫苗分别放置在2-8℃,37℃和56℃,定期取样,用琼脂糖CL-4B凝胶柱层析后,测定Kd值在0.5以前的多糖回收率,结果表明,C群多糖抗原在37℃保存9周,A C群多糖疫苗于2-8℃保存4年,37℃保存88周,56℃保存10个月,多糖抗原或多糖疫苗的Kd值小于0.4,多糖回收率大于75%,符合规程要求;因而A C群脑膜炎球菌多糖疫苗的有效期可定为在2-8℃储藏条件下3年6个月。  相似文献   

6.
建立了高效液相色谱法测定A群C群脑膜炎球菌多糖疫苗中乳糖的含量。样品经离心除去多糖后,采用阳离子交换柱分离,外标法定量分析。该法线性相关系数大于0.9999,回收率为98.8%,成品测定的CV值为1.2%(<2%),该法定量准确,重复性好,适于对A群C群脑膜炎球菌多糖疫苗中乳糖含量进行快速检测。  相似文献   

7.
目的利用离子色谱法即高效阴离子交换柱层析—脉冲安培检测法(HPAEC-PAD),测定ACYW135脑膜炎球菌多糖蛋白结合物中Y群和W135群多糖含量的方法,并加以验证。方法将ACYW135脑膜炎球菌多糖蛋白结合物中Y群和W135群多糖用三氟乙酸(TFA)水解为特异性单糖(葡萄糖、半乳糖),并去除水解液中残留的TFA,用HPAEC-PAD分析检测,用PA10糖分析柱分离单糖,电化学检测器测定葡萄糖及半乳糖含量,用Chromeleon色谱工作站记录并分析数据。对上述方法进行专属性、准确性、重复性验证,确定该方法的检出限和定量限。结果 Y群和W135群多糖在TFA2.5 mol/L(终浓度)、90℃、4 h可完全水解为葡萄糖、半乳糖。对照品葡萄糖及半乳糖在0.10~60.00μg/m L范围内,质量浓度和色谱峰面积呈较好的线性关系,r均大于0.99,回收率为87.94%~109.80%,相对标准偏差(RSD)为1.00%~2.00%,检出限为0.05μg/m L(信噪比3∶1),定量限为0.10μg/m L(信噪比10∶1)。结论离子色谱法可同时检测脑膜炎球菌多糖蛋白结合物中Y群和W135群糖含量,该方法操作简便、灵敏、快速,干扰小,重现性好,适用于对相关疫苗生产过程中的质量控制。  相似文献   

8.
目的:利用肺炎球菌1型全菌体制备多克隆抗体,并且利用该抗体建立肺炎1型荚膜多糖夹心酶联免疫吸附分析法( Enzyme-linked immunosorbent assay ,ELISA),用于检测发酵和纯化过程中的多糖浓度。方法用灭活的1型肺炎链球菌免疫家兔6周,获得高滴度的抗多糖血清,经过亲和层析纯化,获得高纯度的兔抗肺炎1型多糖抗体IgG。以纯化IgG作为包被抗体,加入多糖样品,再以生物素化的抗体作为检测抗体,建立夹心ELISA法检测肺炎1型多糖浓度。确定标准曲线的最佳线性范围,并对该方法进行特异性、准确性和精密度验证。结果兔免疫血清经过双向免疫扩散检测抗体滴度可达1∶32;该方法的线性检测范围为1.56~50 ng/mL;最低检测限为3.13 ng/mL。在标准品中混入其他型别多糖或培养基,回收率分别为102%和108%;该方法批内精密度和批间精密度分别为6.08%和7.01%。结论建立的夹心ELISA方法,其特异性、准确性和精密度均良好,可以特异地检测肺炎球菌1型多糖浓度。  相似文献   

9.
目的建立百日咳组分疫苗丝状血凝素(FHA)抗原含量监控的ELISA检测法。方法制备的多克隆抗血清,经辛酸硫酸铵法纯化抗体,用过碘酸钠氧化法辣根过氧化物酶标记,以棋盘滴定法确定最佳包被抗体及酶标抗体的浓度配伍,建立了双抗体夹心ELISA检测法。结果对双抗体夹心ELISA法的特异性、最佳线性范围、检测限度、精密度、准确度、测定限量、适用性的一系列验证试验表明,该方法与百日咳组分疫苗中PT和Prn无明显交叉反应,特异性较好。在0至20 ng/mL测量区间有最佳线性,相关系数大于0.99;经实验内12次及不同试验间3次测定16、8、4 ng/mL中的FHA含量,变异系数在0.2%~11.4%间,回收率在96.9%~114.5%间,精密度及准确度验证均符合常规质控要求,因此测定限量为4 ng/mL。结论该方法能有效检测出百日咳杆菌培养上清中的FHA含量,可用于百日咳组分疫苗生产过程的中间品质量控制。  相似文献   

10.
定量检测组织型纤溶酶原激活剂夹心ELISA方法的建立   总被引:2,自引:0,他引:2  
目的:建立灵敏、特异的组织型纤溶酶原激活剂(t-PA)定量测定方法,为血栓性疾病和肿瘤性疾病的早期诊断及疗效评估提供辅助手段。方法:采用抗t-PA多克隆抗体包被酶联板、HRP标记抗t-PA单克隆抗体为标记抗体、重组t-PA为标准品,建立定量测定t-PA的夹心ELISA双抗体法。以t-PA测定的特异性、灵敏性和重复性评价夹心ELISA测定法。结果:夹心ELISA测定法可检测t-PA浓度为0.5ng/mL的样品,不同样品的组内和组间的变异系数分别为4.7%和8.4%。采用夹心ELISA法测定40份正常人血浆,t-PA的平均含量为(4±2.1)ng/mL。结论:夹心ELISA测定法具有灵敏性高、特异性强的特点,可用于人血浆中t-PA水平的定量测定。  相似文献   

11.
A quantitative nephelometric method was used for the measurement of the individual pneumococcal, as well as meningococcal, polysaccharides in the polyvalent vaccine final containers. This method is simple, rapid, inexpensive, and provides both qualitative and quantitative analyses of the polyvalent polysaccharide vaccines. By this method the individual pneumococcal types, 1, 2, 3, 4, 6A, 7F, 8, 9N, 12F, 14, 18C, 19F, 23F and 25 polysaccharides, were found to be present at 90-114% of the manufacturer's indicated concentrations; meningococcal group A, C, Y and W135 polysaccharides were at 90-108% of the manufacturer's listed concentrations. This nephelometric method coupled with gel filtration can also be used for measurement of the molecular sizes or stability of individual polysaccharides in the final container. Pneumococcal polysaccharide types 3, 6A, 9N and 19F, used as representative types, were treated with 0.5 N hydrochloric acid. The molecular sizes for types 3 and 9 N polysaccharides were stable to acid treatment. In contrast, types 6A and 19F polysaccharides were degraded. Heating meningococcal groups A, C, Y and W135 polysaccharides at 37 degrees C for 48 h did not affect their molecular size in the polyvalent vaccine.  相似文献   

12.
The molecular size of meningococcal polysaccharides is an important physico-chemical parameter which correlates with immunogenicity. This paper describes the experimental conditions for high-performance size-exclusion chromatography on a PL Aquagel-OH 60 column to follow changes in the size distribution and therefore in the distribution coefficient (K(D)) of the meningococcal polysaccharides of groups A, C, Y and W-135 used to formulate anti-Neisseria meningitidis vaccines. The experimental conditions were also found to be suitable for a rapid monitoring of the quality (no group A polysaccharide depolymerization) of the tetravalent meningococcal polysaccharide vaccine.  相似文献   

13.
Twenty-six patients who had recovered from group A meningococcal meningitis were vaccinated with group C meningococcal polysaccharide and tetanus toxoid. Their haemagglutinating antibody response was measured two weeks later and compared with those of 22 siblings and 39 controls. Patients and siblings had a significantly lower antibody response to the group C vaccine but not to tetanus toxoid. This suggests that patients susceptible to meningococcal disease may have an immune defect involving their response to meningococcal polysaccharides.  相似文献   

14.
An enzyme-linked immunofiltration assay (ELIFA) and a microtitre plate enzyme-linked immunosorbent assay (ELISA) were developed and compared for their ability to detect staphylococcal enterotoxin B (SEB). The double antibody capture format was used for both assays. Factors which improved the sensitivity of the ELIFA system were (1) addition of casein and thimerosal to the antigen dilution buffer; (2) addition of polyethylene glycol (MW 6000) to the detection and conjugate antibody dilution buffers; and (3) washing with diethanolamine buffer prior to addition of the substrate/chromogen. The ELIFA system had a turnaround time of approximately 1 h and a detection limit of 1 ng/mL of purified SEB. The ELISA had a total turnaround time of 21 h, or 3 h using plates pre-coated overnight with the capture antibody. The detection limit of the ELISA for purified SEB was 0.05 ng/mL. The detection limit of SEB in cheese samples spiked with purified enterotoxin and subjected to a simple extraction procedure was 1 ng/mL and 0.1 ng/mL of extract, with the ELIFA and the ELISA, respectively.  相似文献   

15.
The active components of most meningococcal vaccines are four antigenic serogroup capsular polysaccharides (A, C, Y, W135). The vaccines, monovalent or multivalent mixtures of either free polysaccharides or polysaccharides conjugated to antigenic carrier proteins, may be in liquid or lyophilised formulations, with or without excipients. Acid hydrolysis and chromatographic methods for serogroup quantitation, which were previously optimised and qualified using polysaccharide-based standards and a narrow range of real vaccines, are here challenged with multiple lots of a broad assortment of additional multivalent polysaccharide-based meningococcal vaccine products. Centrifugal filtration successfully removed all interfering lactose excipient without loss of polysaccharides to allow for the determination of Y and W135 serogroups. Replicate operations by three different analysts indicated high method reproducibility. Results indicated some lot-to-lot and product-to-product variations. However, all vaccines were within general specifications for each serogroup polysaccharide, with the exception of all lots of one polysaccharide vaccine – which by these methods were found to be deficient in the serogroup A component only. These robust techniques are very useful for the evaluation of antigen content and consistency of manufacture. The deformulation, hydrolysis and chromatographic methods may be adaptable for the evaluation of other types of polysaccharide-based vaccines.  相似文献   

16.
Polysaccharides produced by Neisseria meningitidis are pharmaceutically important molecules, and are the active components of vaccines against N. meningitidis serogroups A, C, W135 and Y. Effective vaccines based on capsular polysaccharide, polysaccharide conjugates and outer membrane vesicles have been developed for strains expressing capsular polysaccharides that define the sero groups A, C, Y and W135. However, conventional approaches to develop a vaccine for group B strains have been largely unsuccessful. This review focuses on the various aspects of fermentative production of meningococcal polysaccharide from N. meningitidis, methods of conjugation for improving the immunogenicity of polysaccharide vaccine, and efficient and cost effective methods for the purification of N. meningitidis capsular polysaccharide and outer membrane vesicles. In addition, different analytical techniques for the quantitative determination of polysaccharide vaccine and evaluation of structural integrity of conjugate vaccine have been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号