首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang N  Lin Y  Xiao Z  Jones GB  Goldberg IH 《Biochemistry》2007,46(16):4793-4803
The solution structure of the complex formed between an oligodeoxynucleotide containing a two-base bulge (5'-CCATCGTCTACCTTTGGTAGGATGG) and SCA-alpha2, a designed spirocyclic helical molecule, has been elucidated. SCA-alpha2, a close mimic of the metabolite, NCSi-gb, of the DNA bulge-specific enediyne antibiotic neocarzinostatin, differs in possessing a more stable spirocyclic ring system and in lacking certain bulky groupings that compromise bulged DNA binding. This study provides a detailed comparison of the binding modes of the two complexes and provides new insights into the importance of shape and space, as opposed to simple nucleotide sequence, in complex formation at the bulge site. The two rigidly held aromatic rings of SCA-alpha2 form a right-handed helical molecular wedge that specifically penetrates the bulge-binding pocket and immobilizes the two bulge residues (GT), which point toward the minor groove, rather than the major groove as in the NCSi-gb.bulged DNA complex. The ligand aromatic ring systems stack on the DNA bulge-flanking base pairs that define the long sides of the triangular prism binding pocket. Like NCSi-gb, SCA-alpha2 possesses the natural N-methylfuranose moiety, alpha-linked to the benzindanol (BI) moiety. The amino sugar anchors in the major groove of the DNA and points toward the 3'-bulge-flanking base pair. Lacking the bulky cyclocarbonate of NCSi-gb, the SCA-alpha2.bulged DNA complex has a much less twisted and buckled 3'-bulge-flanking base pair (dG20.dC8), and the G20 residue stacks directly above the BI ring platform. Also, the absence of the methyl group and the free rotation of the methoxy group on the dihydronaphthanone (NA) moiety of SCA-alpha2 allow better stacking geometry of the NA ring above the 5'-bulge-flanking dG21.dC5 base pair. These and other considerations help to explain why NCSi-gb binds very poorly to bulged RNA and are consistent with the recent observation of good binding with SCA-alpha2. Thus, although the two complexes resemble each other closely, they differ in important local environmental details. SCA-alpha2 has a better hand-in-glove fit at the bulge site, making it an ideal platform for the placement of moieties that can react covalently with the DNA and for generating congeners specific for bulges in RNA.  相似文献   

2.
Kwon Y  Xi Z  Kappen LS  Goldberg IH  Gao X 《Biochemistry》2003,42(5):1186-1198
Neocarzinostatin (NCS-chrom), a natural enediyne antitumor antibiotic, undergoes either thiol-dependent or thiol-independent activation, resulting in distinctly different DNA cleavage patterns. Structures of two different post-activated NCS-chrom complexes with DNA have been reported, revealing strikingly different binding modes that can be directly related to the specificity of DNA chain cleavage caused by NCS-chrom. The third structure described herein is based on recent studies demonstrating that glutathione (GSH) activated NCS-chrom efficiently cleaves DNA at specific single-base sites in sequences containing a putative single-base bulge. In this structure, the GSH post-activated NCS-chrom (NCSi-glu) binds to a decamer DNA, d(GCCAGAGAGC), from the minor groove. This binding triggers a conformational switch in DNA from a loose duplex in the free form to a single-strand, tightly folded hairpin containing a bulge adenosine embedded between a three base pair stem. The naphthoate aromatic moiety of NCSi-glu intercalates into a GG step flanked by the bulge site, and its substituent groups, the 2-N-methylfucosamine carbohydrate ring and the tetrahydroindacene, form a complementary minor groove binding surface, mostly interacting with the GCC strand in the duplex stem of DNA. The bulge site is stabilized by the interactions involving NCSi-glu naphthoate and GSH tripeptide. The positioning of NCSi-glu is such that only single-chain cleavage via hydrogen abstraction at the 5'-position of the third base C (which is opposite to the putative bulge base) in GCC is possible, explaining the observed single-base cleavage specificity. The reported structure of the NCSi-glu-bulge DNA complex reveals a third binding mode of the antibiotic and represents a new family of minor groove bulge DNA recognition structures. We predict analogue structures of NCSi-R (R = glu or other substituent groups) may be versatile probes for detecting the existence of various structures of nucleic acids. The NMR structure of this complex, in combination with the previously reported NCSi-gb-bulge DNA complex, offers models for specific recognition of DNA bulges of various sizes through binding to either the minor or the major groove and for single-chain cleavage of bulge DNA sequences.  相似文献   

3.
NCSi-gb is a neocarzinostatin chromophore (NCS-chrom) metabolite which binds strongly to certain two-base DNA bulges. Compared with previously reported NCSi-gb analogues, a new analogue with a different aminoglycoside position was synthesized, and it showed strong fluorescence and improved binding and sequence selectivity to DNA bulges. The N-dimethylated form of this analogue had a similar binding pattern, and it competitively inhibited bulge-specific cleavage by NCS-chrom.  相似文献   

4.
Hwang GS  Jones GB  Goldberg IH 《Biochemistry》2003,42(28):8472-8483
The solution structure of the complex formed between an oligonucleotide containing a two-base bulge (5'-CACGCAGTTCGGAC.5'-GTCCGATGCGTG) and DDI, a designed synthetic agent, has been elucidated using high-resolution NMR spectroscopy and restrained molecular dynamic simulation. DDI, which has been found to modulate DNA strand slippage synthesis by DNA polymerase I [Kappen, L. S., Xi, Z., Jones, G. B., and Goldberg, I. H. (2003) Biochemistry 42, 2166-2173], is a wedge-shaped spirocyclic molecule whose aglycone structure closely resembles that of the natural product, NCSi-gb, which strongly binds to an oligonucleotide containing a two-base bulge. Changes in chemical shifts of the DNA upon complex formation and intermolecular NOEs between DDI and the bulged DNA duplex indicate that agent specifically binds to the bulge site of DNA. The benzindanone moiety of DDI intercalates via the minor groove into the G7-T8-T9.A20 pocket, which consists of a helical base pair and two unpaired bulge bases, stacking with the G7 and A20 bases. On the other hand, the dihydronaphthalenone and aminoglycoside moieties are positioned in the minor groove. The aminoglycoside, which is attached to spirocyclic ring, aligns along the A20T21G22 sequence of the nonbulged strand, while the dihydronaphthalenone, which is restrained by the spirocyclic structure, is positioned near the G7-T8-T9 bulge site. The aminoglycoside is closely aligned with the dihydronaphthalenone, preventing its intercalation into the bulge site. In the complex, the unpaired purine (G7) is intrahelical and stacks with the intercalating moiety of DDI, whereas the unpaired pyrimidine (T8) is extrahelical. The structure of the complex formed by binding of the synthetic agent to the two-base bulged DNA reveals a binding mode that differs in important details from that of the natural product, explaining the different binding specificity for the bulge sites of DNA. The structure of the DDI-bulged DNA complex provides insight into the structure-binding affinity relationship, providing a rational basis for the design of specific, high-affinity probes of the role of bulged nucleic acid structures in various biological processes.  相似文献   

5.
The solution structure of the complex formed between an oligonucleotide containing a two-base bulge (5'-CACGCAGTTCGGAC.5'-GTCCGATGCGTG) and ent-DDI, a designed synthetic agent, has been elucidated using high-resolution NMR spectroscopy and restrained molecular dynamic simulation. Ent-DDI is a left-handed wedge-shaped spirocyclic molecule whose aglycone portion is an enantiomer of DDI, which mimics the spirocyclic geometry of the natural product, NCSi-gb, formed by base-catalyzed activation of the enediyne antibiotic neocarzinostatin. The benzindanone moiety of ent-DDI intercalates between the A6.T21 and the T9.A20 base pairs, overlapping with portions of the purine bases; the dihydronaphthalenone moiety is positioned in the minor groove along the G7-T8-T9 bulge sequence; and the aminoglycoside is in the middle of the minor groove, approaching A20 of the nonbulged strand. This alignment of ent-DDI along the DNA helical duplex is in the reverse direction to that of DDI. The aminoglycoside moiety of ent-DDI is positioned in the 3' direction from the bulge region, whereas that of the DDI is positioned in the 5' direction from the same site. This reverse binding orientation within the bulge site is the natural consequence of the opposite handedness imposed by the spirocyclic ring junction and permits the aromatic ring systems of the two spirocyclic enantiomers access to the bulge region. NMR and CD data indicate that the DNA in the DDI-bulged DNA complex undergoes a larger conformational change upon complex formation in comparison to the ent-DDI-bulged DNA, explaining the different binding affinities of the two drugs to the bulged DNA. In addition, there are different placements of the bulge bases in the helical duplex in the two complexes. One bulge base (G7) stacks inside the helix, and the other one (T8) is extrahelical in the DDI-bulged DNA complex, whereas both bulge bases in the ent-DDI-bulged DNA complex prefer extrahelical positions for drug binding. Elucidation of the detailed binding characteristics of the synthetic spirocyclic enantiomers provides a rational basis for the design of stereochemically controlled drugs for bulge binding sites.  相似文献   

6.
Xi Z  Mao QK  Goldberg IH 《Biochemistry》1999,38(14):4342-4354
Nucleic acid bulges have been implicated in a number of biological processes and are specific cleavage targets for the enediyne antitumor antibiotic neocarzinostatin chromophore (NCS-chrom) in a base-catalyzed, radical-mediated reaction. Studies designed to elucidate the detailed mechanism of the base-catalyzed activation of NCS-chrom and to evaluate the roles of bulged DNA in its activation are described. They show that nucleobases in the DNA bulge are not required to form an effective bulge pocket but enhance the binding of the wedge-shaped activated drug molecule. Analysis of solvent deuterium isotope effects on NCS-chrom degradation and DNA cleavage efficiency experiments suggests that the spirolactone biradical 6 is a relatively stable species and that intramolecular quenching of the C2 radical of 6 to form the biologically active cyclospirolactone radical 7a occurs first (pathway a in Scheme 2), leaving the C6 radical to abstract the hydrogen atom from the DNA deoxyribose and to form the cyclospirolactone 8. Binding of the activated drug at the bulge site is required, but not sufficient, for efficient 8 formation, whereas cleavage of bulged DNA is not essential. Efficient generation of 8, but inefficient DNA damage generation, comes mainly from the likely high off-rate of 7a binding. The finding that thymidine 5'-carboxylic acid-ended oligonucleotide fragment can be formed in the reaction suggests that the process of DNA cleavage is rather slow and that sequential oxidations of the target 5'-carbon are possible. Study of the effect of solvent (methanol) concentration on NCS-chrom degradation indicates that bulged DNA acts to assist the intramolecular quenching of the radical at C2 by C8' ' of the naphthoate moiety by excluding solvent from the binding pocket, thus preventing the formation of spirolactones 9, and by blocking radical polymerization. Because in the absence or near absence of solvent methanol 8 formation does not reach even 10% that formed in the presence of bulged DNA, it is possible that the DNA bulge also induces a conformational change in the drug to promote the intramolecular reaction.  相似文献   

7.
Because bulged structures (unpaired bases) in nucleic acids are of general biological significance, it has been of interest to design small molecules as specific probes of bulge function. On the basis of our earlier work with the specific DNA bulge-binding metabolite obtained from the enediyne antitumor antibiotic neocarzinostatin chromophore (NCS-chrom), we have prepared three small helical spirocyclic molecules that most closely mimic the natural product. These wedge-shaped molecules resemble the natural product in having the sugar residue attached to the same five-membered ring system. In one instance, the sugar is aminoglucose in beta-glycosidic linkage, and in the other, two enantiomers have the natural sugar N-methylfucosamine in alpha-glycosidic linkage. All three analogues were found to interfere with bulge-specific cleavage by NCS-chrom and the ability of bulged DNA to serve as a template for DNA polymerase 1 in accordance with their binding affinities for DNA containing a two-base bulge. Comparable results were obtained with the analogues for the less efficiently cleaved three-base bulge DNA structures. In each situation, the enantiomers possessing the natural sugar in alpha-glycosidic linkage are the most potent inhibitors of the cleavage reaction. In the DNA polymerase reactions, again, the closest natural product mimics were the most effective in selectively impeding nucleotide extension at the bulge site, presumably by complex formation. These results demonstrate the potential usefulness of bulge-binding compounds in modifying DNA structure and function and support efforts to design and prepare reactive species of these molecules that can covalently modify bulged DNA.  相似文献   

8.
Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive species. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency follows the order: 3>4>2. The complexes exhibit significant DNA cleavage activity on irradiation with visible light of 633 nm. Control experiments show inhibition of cleavage in presence of singlet oxygen quenchers like sodium azide, histidine and enhancement of cleavage in D(2)O, suggesting formation of singlet oxygen as a reactive species in a type-II process. The photosensitizing effect of the thiomethyl group of the amino acid is evidenced from the observation of significant DNA photocleavage activity of the phen complex 2 as the phen ligand itself is not a photosensitizer.  相似文献   

9.
Synthesis of chiral spirocyclic helical compounds containing leucine that mimic the molecular architecture of the potent DNA bulge binder obtained from the natural product metabolite NCSi-gb has been accomplished. The interaction between the compounds and DNA was studied by circular dichroism (CD) method. The results suggested that the two synthetic diastereoisomers specifically targeted the bulge site of DNA and induced conformational change of bulged DNA greatly.  相似文献   

10.
The designed simpler chiral spirocyclic helical compounds that mimic the molecular architecture of the DNA bulge binder NCSi-gb have been prepared. It has been found that the synthesized spirocyclic compounds have strong stimulation effect on DNA slippage synthesis. Their stimulation activities on DNA strand slippage suggest that they may bind to or induce the formation of a non Watson-Crick structure during in vitro replication of DNA triplet repeats.  相似文献   

11.
Bis(hydroxy)salen.Fe complexes were designed as self-activated chemical nucleases. The presence of a hy-droxyl group on the two salicylidene moieties serve to form a hydroquinone system cooperating with the iron redox system to facilitate spontaneous formation of free radicals. We compared the DNA binding and cleaving properties of the ortho -, meta- and para -(bishydroxy) salen.Fe complexes with that of the corresponding chelate lacking the hydroxyl groups. DNA melting temperature studies indicated that the para complex exhibits the highest affinity for DNA. In addition, this para compound was considerably more potent at cleaving supercoiled plasmid DNA than the regio-isomeric ortho - and meta -hydroxy-salen.Fe complexes, even in the absence of a reducing agent, such as dithiothreitol used to activate the metal complex. The DNA cleaving activity of the para isomer is both time and concentration dependent and the complexed iron atom is absolutely essential for the sequence uniform cleavage of DNA. From a mechanistic point of view, electron spin resonance measurements suggest that DNA contributes positively to the activation of the semi-quinone system and the production of ligand radical species responsible for subsequent strand scission in the absence of a reducing agent. The para -hydroxy-salen.Fe complex has been used for detecting sequence-specific drug-DNA interactions. Specific binding of Hoechst 33258 to AT sequences and chromomycin to GC sequences were shown. The para -bis(hydroxy)salen.Fe derivative complements the tool box of footprinting reagents which can be utilised to produce efficient cleavage of DNA.  相似文献   

12.
High-resolution NMR techniques (proton and 19F) have been used to study the interactions between several DNA oligonucleotides with varying length of AT base pairs and the synthetic pyrrole-containing compound (P1-F4S-P1), which has properties similar to the DNA minor groove binding drug distamycin A. When this two-fold symmetrical DNA binding molecule is added to the self-complementary DNA oligomers, the resulting complex exhibits an NMR spectrum without any doubling of individual resonances, consistent with a two-fold symmetry of the complex. This is in contrast to all other complexes studied so far. The minimum length of an AT stretch for specific ligand binding is judged to be greater than 4 base pairs. Inter-molecular proton nuclear Overhauser effects between the ligand molecule and a DNA dodecamer d(CGCAAATTTGCG) provide evidence that P1-F4S-P1 binds DNA in the minor groove and interacts with the middle AT base pairs. The presence of a specific interaction between P1-F4S-P1 and DNA is conclusively demonstrated by 19F NMR studies, in which four previously chemically equivalent fluorine nuclei in the free molecule become two non-equivalent pairs (yielding an AB quartet pattern) upon the binding of P1-F4S-P1 to DNA duplex. A sequence-dependent binding behavior of P1-F4S-P1 is evident by comparing the 19F NMR spectra of the complexes between P1-F4S-P1 and two different but related DNA dodecamers, d(CGCAAATTTGCG) and d(CGCTTTAAAGCG). P1-F4S-P1 binds more strongly to the former dodecamer with an association constant of approximately 1 X 10(3) M-1.  相似文献   

13.
The antitumor antibiotics chromomycin A(3) (CHR) and mithramycin (MTR) are known to inhibit macromolecular biosynthesis by reversibly binding to double stranded DNA with a GC base specificity via the minor groove in the presence of a divalent cation such as Mg(2+). Earlier reports from our laboratory showed that the antibiotics form two types of complexes with Mg(2+): complex I with 1:1 stoichiometry and complex II with 2:1 stoichiometry in terms of the antibiotic and Mg(2+). The binding potential of an octanucleotide, d(TATGCATA)(2), which contains one potential site of association with the above complexes of the two antibiotics, was examined using spectroscopic techniques such as absorption, fluorescence, and circular dichroism. We also evaluated thermodynamic parameters for the interaction. In spite of the presence of two structural moieties of the antibiotic in complex II, a major characteristic feature was the association of a single ligand molecule per molecule of octameric duplex in all cases. This indicated that the modes of association for the two types of complexes with the oligomeric DNA were different. The association was dependent on the nature of the antibiotics. Spectroscopic characterization along with analysis of binding and thermodynamic parameters showed that differences in the mode of recognition by complexes I and II of the antibiotics with polymeric DNA existed at the oligomeric level. Analysis of the thermodynamic parameters led us to propose a partial accommodation of the ligand in the groove without the displacement of bound water molecules and supported earlier results on the DNA structural transition from B --> A type geometry as an obligatory requirement for the accommodation of the bulkier complex II of the two drugs. The role of the carbohydrate moieties of the antibiotics in the DNA recognition process was indicated when we compared the DNA binding properties with the same type of Mg(2+) complex for the two antibiotics.  相似文献   

14.
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding.  相似文献   

15.
The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.04x10(3); 2, 3.9+/-0.3x10(3); 3, 1.7+/-0.5x10(4) M(-1)) and thermal denaturation studies (deltaTm: 1, 5.70+/-0.05; 2, 5.5+/-10; 3, 10.6+/-10 degrees C) and viscosity measurements indicate that 3 interacts with calf thymus DNA more strongly than 1 and 2. The relative viscosities of DNA bound to 1 and 3 increase while that of DNA bound to 2 decreases indicating formation of kinks or bends and/or conversion of B to A conformation as revealed by the decrease in intensity of the helicity band in the circular dichroism spectrum of DNA. While 1 and 3 are bound to DNA through partial intercalation, respectively, of phen ring and the extended planar ring of dpq with DNA base stack, the complex 2 is involved in groove binding. All the complexes show cleavage of pBR322 supercoiled DNA in the presence of ascorbic acid with the cleavage efficiency varying in the order 3 > 1 > 2. The highest oxidative DNA cleavage of dpq complex is ascribed to its highest Cu(II)/Cu(I) redox potential. Oxidative cleavage studies using distamycin reveal minor groove binding for the dpq complex but a major groove binding for the phen and 5,6-dmp complexes. Also, all the complexes show hydrolytic DNA cleavage activity in the absence of light or a reducing agent with cleavage efficiency varying in the order 1 > 3 > 2.  相似文献   

16.
The natural product triostin A is known as an antibiotic based on specific DNA recognition. Structurally, a bicyclic depsipeptide backbone provides a well-defined scaffold preorganizing the recognition motifs for bisintercalation. Replacing the intercalating quinoxaline moieties of triostin A by nucleobases results in a potential major groove binder. The functionalization of this DNA binding triostin A analog with a metal binding ligand system is reported, thereby generating a hybrid molecule with DNA binding and metal coordinating capability. Transition metal ions can be placed in close proximity to dsDNA by means of non-covalent interactions. The synthesis of the nucleobase-modified triostin A analog is described containing a propargylglycine for later attachment of the ligand by click-chemistry. As ligand, two [1,4,7]triazacyclononane rings were bridged by a phenol. Formation of the proposed binuclear zinc complex was confirmed for the ligand and the triostin A analog/ligand construct by high-resolution mass spectrometry. The complex as well as the respective hybrid led to stabilization of dsDNA, thus implying that metal complexation and DNA binding are independent processes.  相似文献   

17.
Understanding the molecular basis of ligand-DNA-binding events, and its application to the rational design of novel drugs, requires knowledge of the structural features and forces that drive the corresponding recognition processes. Existing structural evidence on DNA complexation with classical minor groove-directed ligands and the corresponding studies of binding energetics have suggested that this type of binding can be described as a rigid-body association. In contrast, we show here that the binding-coupled conformational changes may be crucial for the interpretation of DNA (hairpin) association with a classical minor groove binder (netropsin). We found that, although the hairpin form is the only accessible state of ligand-free DNA, its association with the ligand may lead to its transition into a duplex conformation. It appears that formation of the fully ligated duplex from the ligand-free hairpin, occurring via two pathways, is enthalpically driven and accompanied by a significant contribution of the hydrophobic effect. Our thermodynamic and structure-based analysis, together with corresponding theoretical studies, shows that none of the predicted binding steps can be considered as a rigid-body association. In this light we anticipate our thermodynamic approach to be the basis of more sophisticated nucleic acid recognition mechanisms, which take into account the dynamic nature of both the nucleic acid and the ligand molecule.  相似文献   

18.
Abstract

DNA-drug complexes are important because of their pharmacological interest but, in addition, they provide a useful model to study the essential aspects of DNA recognition processes. In order to investigate the influence of ligand binding on the dynamic properties of DNA we have carried out normal mode analysis for complexes with drugs of two types: a typical intercalator, 9-aminoacridine, and a typical groove binder, netropsin. Normal modes are analysed in terms of helicoidal parameter variations with special attention being paid to global deformations of the double helix. The results show that the influence of these two drugs is very different. Intercalation of 9-aminoacridine leads to an increase in the flexibility of the intercalated dinucleotide step, with notably larger vibrational amplitudes for both roll and twist parameters compared to free DNA. In contrast, the groove binding of netropsin induces a stiffening of the DNA segment which is in contact with the drug reflected by decreased vibrational amplitudes for backbone angles and inter base pair helicoidal parameters and an increase in vibrations for adjacent base pairs in terms of buckle and propeller twist.  相似文献   

19.
Gu F  Xi Z  Goldberg IH 《Biochemistry》2000,39(16):4881-4891
Bulge structures in nucleic acids are of general biological significance and are potential targets for therapeutic drugs. It has been shown in a previous study that thiol-activated neocarzinostatin chromophore is able to cleave duplex DNA selectively at a position opposite a single unpaired cytosine or thymine base on the 3' side. In this work, we studied in greater detail the nature of this type of cleavage and the basis for the selectivity of the bulge site cleavage over the usual strand cleavage at a T site in the duplex region by using duplexes containing an internal control and a bulge, which is composed of different types and number of bases. Experimental results indicated that the bulge-induced cleavage is initiated by 5' hydrogen abstraction and is greatly affected by the base composition of the bulge. A single-base bulge, especially when containing a purine, yields higher efficiency and greater selectivity for the bulge-induced cleavage. In particular, a single adenine base gives rise to the highest cleavage yield and provides over 20 times greater selectivity for cleavage at the bulge site compared with the internal control site in duplexes. The binding dissociation constants of postactivated drug for a stem-loop structure containing a one- or two-base bulge in the stem, measured by fluorescence quenching, show that the binding is about 3-4 times stronger for bulge-containing duplexes than for perfect hairpin duplexes. For RNA.DNA hybrid duplexes, where the DNA is the target strand and the RNA is the bulge-containing strand, bulge-induced cleavage was observed, although at low yield. On the other hand, when RNA is the nonbulge strand, no bulge-induced cleavage was found. When the reaction is performed in the absence of oxygen, the major product is a covalent adduct, and it is at the same location as the cleavage site under aerobic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号