首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

2.
Abnormal control of ventilation in high-altitude pulmonary edema   总被引:2,自引:0,他引:2  
We wished to determine the role of hypoxic chemosensitivity in high-altitude pulmonary edema (HAPE) by studying persons when ill and upon recovery. We studied seven males with HAPE and seventeen controls at 4,400 m on Mt. McKinley. We measured ventilatory responses to both O2 breathing and progressive poikilocapnic hypoxia. Hypoxic ventilatory response (HVR) was described by the slope relating minute ventilation to percent arterial O2 saturation (delta VE/delta SaO2%). HAPE subjects were quite hypoxemic (SaO2% 59 +/- 6 vs. 85 +/- 1, P less than 0.01) and showed a high-frequency, low-tidal-volume pattern of breathing. O2 decreased ventilation in controls (-20%, P less than 0.01) but not in HAPE subjects. The HAPE group had low HVR values (0.15 +/- 0.07 vs. 0.54 +/- 0.08, P less than 0.01), although six controls had values in the same range. The three HAPE subjects with the lowest HVR values were the most hypoxemic and had a paradoxical increase in ventilation when breathing O2. We conclude that a low HVR plays a permissive rather than causative role in the pathogenesis of HAPE and that the combination of extreme hypoxemia and low HVR may result in hypoxic depression of ventilation.  相似文献   

3.
The effect of carbonic anhydrase inhibition with acetazolamide (Acz, 10 mg/kg) on the ventilatory response to an abrupt switch into hyperoxia (end-tidal PO2 = 450 Torr) and hypoxia (end-tidal PO2 = 50 Torr) was examined in five male subjects [30 +/- 3 (SE) yr]. Subjects exercised at a work rate chosen to elicit an O2 uptake equivalent to 80% of the ventilatory threshold. Ventilation (VE) was measured breath by breath. Arterial oxyhemoglobin saturation (%SaO2) was determined by ear oximetry. After the switch into hyperoxia, VE remained unchanged from the steady-state exercise prehyperoxic value (60.6 +/- 6.5 l/min) during Acz. During control studies (Con), VE decreased from the prehyperoxic value (52.4 +/- 5.5 l/min) by approximately 20% (VE nadir = 42.4 +/- 6.3 l/min) within 20 s after the switch into hyperoxia. VE increased during Acz and Con after the switch into hypoxia; the hypoxic ventilatory response was significantly lower after Acz compared with Con [Acz, change (Delta) in VE/DeltaSaO2 = 1.54 +/- 0.10 l. min-1. SaO2-1; Con, DeltaVE/DeltaSaO2 = 2.22 +/- 0.28 l. min-1. SaO2-1]. The peripheral chemoreceptor contribution to the ventilatory drive after acute Acz-induced carbonic anhydrase inhibition is not apparent in the steady state of moderate-intensity exercise. However, Acz administration did not completely attenuate the peripheral chemoreceptor response to hypoxia.  相似文献   

4.
Ventilatory response to graded external dead space (0.5, 1.0, 2.0, and 2.5 liters) with hyperoxia and CO2 steady-state inhalation (3, 5, 7, and 8% CO2 in O2) was studied before and after 4% lidocaine aerosol inhalation in nine healthy males. The mean ventilatory response (delta VE/delta PETCO2, where VE is minute ventilation and PETCO2 is end-tidal PCO2) to graded dead space before airway anesthesia was 10.2 +/- 4.6 (SD) l.min-1.Torr-1, which was significantly greater than the steady-state CO2 response (1.4 +/- 0.6 l.min-1.Torr-1, P less than 0.001). Dead-space loading produced greater oscillation in airway PCO2 than did CO2 gas loading. After airway anesthesia, ventilatory response to graded dead space decreased significantly, to 2.1 +/- 0.6 l.min-1.Torr-1 (P less than 0.01) but was still greater than that to CO2. The response to CO2 did not significantly differ (1.3 +/- 0.5 l.min-1.Torr-1). Tidal volume, mean inspiratory flow, respiratory frequency, inspiratory time, and expiratory time during dead-space breathing were also depressed after airway anesthesia, particularly during large dead-space loading. On the other hand, during CO2 inhalation, these respiratory variables did not significantly differ before and after airway anesthesia. These results suggest that in conscious humans vagal airway receptors play a role in the ventilatory response to graded dead space and control of the breathing pattern during dead-space loading by detecting the oscillation in airway PCO2. These receptors do not appear to contribute to the ventilatory response to inhaled CO2.  相似文献   

5.
Compensation for inspiratory flow-resistive loading was compared during progressive hypercapnia and incremental exercise to determine the effect of changing the background ventilatory stimulus and to assess the influence of the interindividual variability of the unloaded CO2 response on evaluation of load compensation in normal subjects. During progressive hypercapnia, ventilatory response was incompletely defended with loading (mean unloaded delta VE/delta PCO2 = 3.02 +/- 2.29, loaded = 1.60 +/- 0.67 1.min-1.Torr-1 CO2, where VE is minute ventilation and PCO2 is CO2 partial pressure; P less than 0.01). Furthermore the degree of defense of ventilation with loading was inversely correlated with the magnitude of the unloaded CO2 response. During exercise, loading produced no depression in ventilatory response (mean delta VE/delta VCO2 unloaded = 20.5 +/- 1.9, loaded = 19.2 +/- 2.5 l.min-1.l-1.min-1 CO2 where VCO is CO2 production; P = NS), and no relationship was demonstrated between degree of defense of the exercise ventilatory response and the unloaded CO2 response. Differences in load compensation during CO2 rebreathing and exercise suggest the presence of independent ventilatory control mechanisms in these states. The type of background ventilatory stimulus should therefore be considered in load compensation assessment.  相似文献   

6.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

7.
We aimed to investigate whether newborn rats respond to acute hypoxia with a biphasic pattern as other newborn species, the characteristics of their ventilatory response to hypercapnia, and the ventilatory response to combined hypoxic and hypercapnic stimuli. First, we established that newborn unanesthetized rats (2-4 days old) exposed to 10% O2 respond as other species. Their ventilation (VE), measured by flow plethysmography, immediately increased by 30%, then dropped and remained around normoxic values within 5 min. The drop was due to a decrease in tidal volume, while frequency remained elevated. Hence, alveolar ventilation was about 10% below normoxic value. At the same time O2 consumption, measured manometrically, dropped (-23%), possibly indicating a mechanism to protect vital organs. Ten percent CO2 in O2 breathing determined a substantial increase in VE (+47%), indicating that the respiratory pump is capable of a marked sustained hyperventilation. When CO2 was added to the hypoxic mixture, VE increased by about 85%, significantly more than without the concurrent hypoxic stimulus. Thus, even during the drop in VE of the biphasic response to hypoxia, the respiratory control system can respond with excitation to a further increase in chemical drive. Analysis of the breathing patterns suggests that in the newborn rat in hypoxia the inspiratory drive is decreased but the inspiratory on-switch mechanism is stimulated, hypercapnia increases ventilation mainly through an increase in respiratory drive, and moderate asphyxia induces the most powerful ventilatory response by combining the stimulatory action of hypercapnia and hypoxia.  相似文献   

8.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

9.
Hypoxic and hypercapnic ventilatory responses were measured after two levels of acute inhalation of cigarette smoke, minimum-level nicotine smoke (smoke 1) and nicotine-containing smoke (smoke 2), in 10 normal men. Chemosensitivity to hypoxia and hypercapnia was assessed both in terms of slope factors for ventilation-alveolar PO2 curve (A) and ventilation-alveolar PCO2 line (S) and of absolute levels of minute ventilation (VE) at hypoxia or hypercapnia. Ventilatory response to hypoxia and absolute level of VE at hypoxia significantly increased from 23.5 +/- 22.6 (SD) to 38.6 +/- 31.3 l . min-1 . Torr and from 10.6 +/- 2.5 to 12.6 +/- 3.5 l . min-1, respectively, during inhalation of cigarette smoke 2 (P less than 0.05). Inhalation of cigarette smoke 2 tended to increase the ventilatory response to hypercapnia, and the absolute level of VE at hypercapnia rose from 1.42 +/- 0.75 to 1.65 +/- 0.58 l . min-1 . Torr-1 and from 23.7 +/- 4.9 to 25.5 +/- 5.9 l . min-1, respectively, but these changes did not attain significant levels. Cigarette smoke 2 inhalation induced an increase in heart rate from 64.7 +/- 5.7 to 66.4 +/- 6.3 beats . min-1 (P less than 0.05) during room air breathing, whereas resting ventilation and specific airway conductance did not change significantly. On the other hand, acute inhalation of cigarette smoke 1 changed none of these variables. These results indicate that hypoxic chemosensitivity is augmented after cigarette smoke and that nicotine is presumed to act on peripheral chemoreceptors.  相似文献   

10.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

11.
The purpose of the present study was to investigate the contribution of ventilation to arterial O2 desaturation during maximal exercise. Nine untrained subjects and 22 trained long-distance runners [age 18-36 yr, maximal O2 uptake (VO2max) 48-74 ml.min-1 x kg-1] volunteered to participate in the study. The subjects performed an incremental exhaustive cycle ergometry test at 70 rpm of pedaling frequency, during which arterial O2 saturation (SaO2) and ventilatory data were collected every minute. SaO2 was estimated with a pulse oximeter. A significant positive correlation was found between SaO2 and end-tidal PO2 (PETO2; r = 0.72, r2 = 0.52, P < 0.001) during maximal exercise. These statistical results suggest that approximately 50% of the variability of SaO2 can be accounted for by differences in PETO2, which reflects alveolar PO2. Furthermore, PETO2 was highly correlated with the ventilatory equivalent for O2 (VE/VO2; r = 0.91, P < 0.001), which indicates that PETO2 could be the result of ventilation stimulated by maximal exercise. Finally, SaO2 was positively related to VE/VO2 during maximal exercise (r = 0.74, r2 = 0.55, P < 0.001). Therefore, one-half of the arterial O2 desaturation occurring during maximal exercise may be explained by less hyperventilation, specifically for our subjects, who demonstrated a wide range of trained states. Furthermore, we found an indirect positive correlation between SaO2 and ventilatory response to CO2 at rest (r = 0.45, P < 0.05), which was mediated by ventilation during maximal exercise. These data also suggest that ventilation is an important factor for arterial O2 desaturation during maximal exercise.  相似文献   

12.
Ventilatory responses to isocapnic hypoxia, with and without an inspiratory elastic load (12.1 cmH2O/l), were measured in seven healthy subjects using a rebreathing technique. During each experiment, the end-tidal PCO2 was held constant using a variable-speed pump to draw gas from the rebreathing bag through a CO2 absorbing bypass. Studies with and without the load were performed in a formally randomized order for each subject. Linear regressions for rise in ventilation against fall in SaO2 were calculated. The range of unloaded responses was 0.74-1.38 1/min per 1% fall in SaO2 and loaded responses 0.71-1.56 1/min per 1% fall in SaO2. Elastic loading did not significantly alter the ventilatory response to progressive hypoxia (P greater than 0.2). In all subjects there was, however, a change in breathing pattern during loading, whereby increments in ventilation were attained by smaller tidal volumes and higher frequencies than in the control experiments. These results support the hypothesis previously proposed in our studies of resistive loading during progressive hypoxia, that a similar control pathway appears to be involved in response to the application of loads to breathing, whether ventilation is stimulated by hypoxia or hypercapnia.  相似文献   

13.
Studies were performed to determine the effects of aging on the ventilatory responsiveness to two known respiratory stimulants, inhaled CO2 and exercise. Although explanation of the physiological mechanisms underlying development of exercise hyperpnea remains elusive, there is much circumstantial evidence that during exercise, however mediated, ventilation is coupled to CO2 production. Thus matched groups of young and elderly subjects were studied to determine the relationship between increasing ventilation and increasing CO2 production (VCO2) during steady-state exercise and the change in their minute ventilation in response to progressive hypercapnia during CO2 rebreathing. We found that the slope of the ventilatory response to hypercapnia was depressed in elderly subjects when compared with the younger control group (delta VE/delta PCO2 = 1.64 +/- 0.21 vs. 2.44 +/- 0.40 l X min-1 X mmHg-1, means +/- SE, respectively). In contrast, the slope of the relationship between ventilation and CO2 production during exercise in the elderly was greater than that of younger subjects (delta VE/delta VCO2 = 29.7 +/- 1.19 vs. 25.3 +/- 1.54, means +/- SE, respectively), as was minute ventilation at a single work load (50 W) (32.4 +/- 2.3 vs. 25.7 +/- 1.54 l/min, means +/- SE, respectively). This increased ventilation during exercise in the elderly was not produced by arterial O2 desaturation, and increased anaerobiasis did not play a role. Instead, the increased ventilation during exercise seems to compensate for increased inefficiency of gas exchange such that exercise remains essentially isocapnic. In conclusion, in the elderly the ventilatory response to hypercapnia is less than in young subjects, whereas the ventilatory response to exercise is greater.  相似文献   

14.
To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.  相似文献   

15.
In this study we sought to determine the effects of background hyperoxia on the ventilatory response to hypercapnia. We addressed this issue by examining the temporal profile of the first minute transients of minute ventilation, and its frequency and tidal components, in response to 5% and 10% CO2 each co-applied with the natural (balanced with air) and hyperoxic (balanced with O2) levels of oxygen. The study was performed on the urethane-anesthetized, tracheostomized, spontaneously breathing mouse, placed in a flow-through body plethysmograph. We identified an early suppressant effect of CO2-in-O2 on breathing frequency. The frequency declined to 88.5 +/-1.4% and 87.8 +/-1.9% relative to the pre-test, baseline level for 5% and 10% CO2, respectively. There was a compensatory rise in tidal volume and no major change in the overall ventilation. In contrast, CO2-in-Air resulted in ventilatory stimulation caused in equal measure by frequency and tidal components. Thus, the inhibitory effect on breathing frequency of the CO2-in-O2 resulted from the O2 content in the mixture and had the temporal characteristics consistent with carotid body function. In conclusion, transient O2-dependent effects can bear on the nascent hypercapnic ventilatory response. The complexity of the O2-CO2 interaction regarding the breathing pattern components should be taken into account while designing the optimal conditions for a hypercapnic test.  相似文献   

16.
Control of exercise hyperpnea during hypercapnia in humans   总被引:1,自引:0,他引:1  
Previous studies have yielded conflicting results on the ventilatory response to CO2 during muscular exercise. To obviate possible experimental errors contributing to such variability, we have examined the CO2-exercise interaction in terms of the ventilatory response to exercise under conditions of controlled hypercapnia. Eight healthy male volunteers underwent a sequence of 5-min incremental treadmill exercise runs from rest up to a maximum CO2 output (VCO2) of approximately 1.5 l . min-1 in four successive steps. The arterial PCO2 (PaCO2) at rest was stabilized at the control level or up to 14 Torr above control by adding 0-6% CO2 to the inspired air. Arterial isocapnia (SD = 1.2 Torr) throughout each exercise run was maintained by continual adjustment of the inspired PCO2. At all PaCO2 levels the response in total ventilation (VE) was linearly related to exercise VCO2. Hypercapnia resulted in corresponding increases in both the slope (S) and zero intercept (V0) of the VE-VCO2 curve; these being directly proportional to the rise in PaCO2 (means +/- SE: delta S/ delta PaCO2, 2.73 +/- 0.28 Torr-1; delta V0/ delta PaCO2, 1.67 +/- 0.18 l . min-1 . Torr-1). Thus the ventilatory response to concomitant hypercapnia and exercise was characterized by a synergistic (additive plus multiplicative) effect, suggesting a positive interaction between these stimuli. The increased exercise sensitivity in hypercapnia is qualitatively consistent with the hypothesis that VE is controlled to minimize the conflicting challenges due to chemical drive and the mechanical work of breathing (Poon, C. S. In: Modelling and Control of Breathing, New York: Elsevier, 1983, p. 189-196).  相似文献   

17.
Glia are thought to regulate ion homeostasis, including extracellular pH; however, their role in modulating central CO2 chemosensitivity is unclear. Using a push-pull cannula in chronically instrumented and conscious rats, we administered a glial toxin, fluorocitrate (FC; 1 mM) into the retrotrapezoid nucleus (RTN), a putative chemosensitive site, during normocapnia and hypercapnia. FC exposure significantly increased expired minute ventilation (VE) to a value 38% above the control level during normocapnia. During hypercapnia, FC also significantly increased both breathing frequency and expired VE. During FC administration, maximal ventilation was achieved at approximately 4% CO2, compared with 8-10% CO2 during control hypercapnic trials. RTN perfusion of control solutions had little effect on any ventilatory measures (VE, tidal volume, or breathing frequency) during normocapnic or hypercapnic conditions. We conclude that unilateral impairment of glial function in the RTN of the conscious rat results in stimulation of respiratory output.  相似文献   

18.
Eight healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with an inspiratory resistive load (IRL) of approximately 12 cmH2O.1-1.s. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE - VCO2) relationship in NL and IRL. Compared with NL, the VE - VCO2 slope was depressed by IRL, more so in hypercapnic [-19.0 +/- 3.4 (SE) %] than in eucapnic exercise (-6.0 +/- 2.0%), despite a similar increase in the slope of the occlusion pressure at 100 ms - VCO2 (P100 - VCO2) relationship under both conditions. The steady-state hypercapnic ventilatory response at rest was markedly depressed by IRL (-22.6 +/- 7.5%), with little increase in P100 response. For a given inspiratory load, breathing pattern responses to separate or combined hypercapnia and exercise were similar. During IRL, VE was achieved by a greater tidal volume (VT) and inspiratory duty cycle (TI/TT) along with a lower mean inspiratory flow (VT/TI). The increase in TI/TT was solely because of a prolongation of inspiratory time (TI) with little change in expiratory duration for any given VT. The ventilatory and breathing pattern responses to IRL during CO2 inhalation and exercise are in favor of conservation of respiratory work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To test the hypothesis that increased hypoxic ventilatory responsiveness (HVR) raised maternal ventilation and arterial oxygenation during high-altitude pregnancy and related to the birth weight of the offspring, we studied 21 residents of Cerro de Pasco, Peru (4,300 m), while eight of them were 36 +/- 0 wk pregnant and 15 of them 13 +/- 0 wk postpartum. HVR was low in the nonpregnant women (mean +/- SE shape parameter A = 23 +/- 8) but increased nearly fourfold with pregnancy (A = 87 +/- 17). The increase in HVR appeared to account for the 25% rise in resting ventilation with pregnancy (delta VE observed = 2.4 +/- 0.7 l/min BTPS vs. delta VE predicted from delta HVR = 2.6 +/- 1.7 l/min BTPS, P = NS). Hyperoxia decreased ventilation in the pregnant women (P less than 0.01) to levels similar to those measured when nonpregnant. The increased ventilation of pregnancy raised arterial O2 saturation (SaO2) from 83 +/- 1 to 87 +/- 0%, and SaO2 was correlated positively with HVR in the pregnant women. The rise in SaO2 compensated for a 0.9 g/100 ml decrease in hemoglobin concentration to preserve arterial O2 content at levels present when nonpregnant. Cardiac output in the 36th wk of pregnancy did not differ significantly from values measured postpartum. The increase in HVR correlated positively with infant birth weight. An increase in HVR may be an important contributor to increased maternal ventilation with pregnancy and infant birth weight at high altitude.  相似文献   

20.
In nine normal subjects we measured the ventilatory response to isocapnic hypoxia with and without an intravenous infusion of 1 mg of somatostatin. Arterial O2 saturation was rapidly lowered to 80 +/- 2% in 2 min and maintained for 30 min. During control experiments, ventilation increased immediately (3-5 min) and then declined so that at 25 min of hypoxia ventilation was little above that in room air. Somatostatin was associated with a small decrease in ventilation while the subjects breathed room air. With hypoxia there was no immediate increase in ventilation for the group as a whole, although an increase was observed in one subject. With somatostatin, after 25 min of hypoxia, mean ventilation was lower than at any other time in the study; as hypoxia was discontinued ventilation increased slightly. Somatostatin causes profound depression of the ventilatory response to hypoxia by a mechanism that is not known but may be central. With somatostatin hypoxia of 25-min duration tends to depress ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号