首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liang, Pei-Ji, Daphne A. Bascom, and Peter A. Robbins.Extended models of the ventilatory response to sustained isocapnic hypoxia in humans. J. Appl. Physiol. 82(2): 667-677, 1997.The purpose of this study was to examine extensions of a modelof hypoxic ventilatory decline (HVD) in humans. In the original model (model I) devised by R. Painter, S. Khamnei, and P. Robbins(J. Appl. Physiol. 74: 2007-2015, 1993), HVD is modeledentirely by a modulation of peripheral chemoreflex sensitivity. In thefirst extension (model II), a more complicated dynamic is usedfor the change in peripheral chemoreflex sensitivity. In the secondextension (model III), HVD is modeled as a combination ofboth the mechanism of Painter et al. and a component that isindependent of peripheral chemoreflex sensitivity. In all cases, aparallel noise structure was incorporated to describe the stochasticproperties of the ventilatory behavior to remove the correlation of theresiduals. Data came from six subjects from a study by D. A. Bascom, J. J. Pandit, I. D. Clement, and P. A. Robbins (Respir. Physiol.88: 299-312, 1992). For model II, there was a significantimprovement in fit for two out of six subjects. The reasons for thiswere not entirely clear. For model III, the fit was againsignificantly improved in two subjects, but in this case the subjectswere those who had the most marked undershoot and recovery ofventilation at the relief of hypoxia. In these two subjects, thechemoreflex-independent component contributed ~50% to total HVD.In the other four subjects, the chemoreflex-independent componentcontributed ~10% to total HVD. It is concluded that in somesubjects, but not in others, there may be a component of HVD thatis independent of peripheral chemoreflex sensitivity.

  相似文献   

2.
Measurement of the acute hypoxic ventilatory response (AHVR) requires careful choice of the hypoxic stimulus. If the stimulus is too brief, the response may be incomplete; if the stimulus is too long, hypoxic ventilatory depression may ensue. The purpose of this study was to compare three different techniques for assessing AHVR, using different hypoxic stimuli, and also to examine the between-day variability in AHVR. Ten subjects were studied, each on six different occasions, which were >/=1 wk apart. On each occasion, AHVR was assessed using three different protocols: 1) protocol SW, which uses square waves of hypoxia; 2) protocol IS, which uses incremental steps of hypoxia; and 3) protocol RB, which simulates an isocapnic rebreathing test. Mean values for hypoxic sensitivity were 1.02 +/- 0.48, 1.15 +/- 0.55, and 0.93 +/- 0.60 (SD) l. min(-1). %(-1) for protocols SW, IS, and RB, respectively. These differed significantly (P < 0.01). The coefficients of variation for measurement of AHVR were 20, 23, and 36% for the three protocols, respectively. These were not significantly different. There was a significant physiological variation in AHVR (F (50,100) = 3.9, P < 0. 001), with a coefficient of variation of 26%. We conclude that there was relatively little systematic variation between the three protocols but that AHVR varies physiologically over time.  相似文献   

3.
4.
The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.  相似文献   

5.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

6.
7.
Dynamics of the ventilatory response to central hypoxia in cats   总被引:4,自引:0,他引:4  
The dynamics of the effect of central hypoxia on ventilation were investigated by the technique of artificial perfusion of the brain stem in alpha-chloralose-urethan-anesthetized cats. A two-channel roller pump and a four-way valve allowed switching the gas exchanger into and out of the extracorporeal circuit which controlled the brain stem perfusion. When isocapnic hypoxia (arterial PO2 range 18-59 Torr) was limited to the brain stem, a decline in ventilation was consistently found. In 12 cats 47 steps into and 48 steps out of central hypoxia were made. The ventilatory response was fitted using least squares with a model that consisted of a latency followed by a single-exponential function. The latencies for the steps into and out of hypoxia were not significantly different (P = 0.14) and were 32.3 +/- 4.0 and 25.1 +/- 3.6 (SE) s, respectively. The time constant for the steps into hypoxia (149.7 +/- 8.5 s) was significantly longer (P = 0.0002) than for the steps out of hypoxia (105.5 +/- 10.1 s). The time constants for the increase and decrease in ventilation after step changes in the central arterial PCO2 found in a previous study (J. Appl. Physiol. 66: 2168-2172, 1989) were not significantly different (P greater than 0.2) from the corresponding time constants in this study (for 7 cats common to both studies). Theories of the mechanisms behind hypoxic ventilatory decline need to account for the long latency, the similarity between the time constants for the ventilatory response to O2 and CO2, and the differences between the time constants for increasing and decreasing ventilation.  相似文献   

8.
Honda, Y., H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. Effect of priorO2 breathing on ventilatoryresponse to sustained isocapnic hypoxia in adult humans.J. Appl. Physiol. 81(4):1627-1632, 1996.Sixteen healthy volunteers breathed 100%O2 or room air for 10 min in random order, then their ventilatory response to sustained normocapnic hypoxia (80% arterial O2saturation, as measured with a pulse oximeter) was studied for 20 min.In addition, to detect agents possibly responsible for the respiratorychanges, blood plasma of 10 of the 16 subjects was chemically analyzed.1) Preliminary O2 breathing uniformly andsubstantially augmented hypoxic ventilatory responses.2) However, the profile ofventilatory response in terms of relative magnitude, i.e., biphasichypoxic ventilatory depression, remained nearly unchanged.3) Augmented ventilatory incrementby prior O2 breathing wassignificantly correlated with increment in the plasma glutamine level.We conclude that preliminary O2administration enhances hypoxic ventilatory response without affectingthe biphasic response pattern and speculate that the excitatory aminoacid neurotransmitter glutamate, possibly derived from augmentedglutamine, may, at least in part, play a role in this ventilatoryenhancement.

  相似文献   

9.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

10.
11.
We tested whether hyperbaric O2 (HBO) has an adverse effect on the hypoxic ventilatory drive. Four groups of rats were exposed for 550 min to O2 at 1.67, 1.90, and 2.15 ATA and to air at 1.90 ATA, respectively. Ventilatory parameters (frequency, tidal volume, and minute ventilation) were measured using whole-body plethysmography, before the hyperbaric exposure, immediately after the exposure, and up to 20 days after the exposure. Resting ventilation was not affected after exposure at 1.90 ATA to air or at 1.67 ATA to O2. HBO at 1.90 and 2.15 ATA caused a reduction of frequency and an elevation of tidal volume at different inspired gases: air, 5% CO2 balance O2, 80% O2, and 4.5% O2. However, minute ventilation on the day after the hyperoxic exposure was not different from the control at either air, 5% CO2, or 80% O2 but was markedly attenuated on the first three breaths at 4.5% O2. The hypoxic ventilation decreased to 48 +/- 13 (SD) and 32 + 11% after 1.90 and 2.15 ATA, respectively. The ventilatory parameters recovered in the days after HBO. We conclude that HBO reversibly depresses the hypoxic ventilatory drive, most probably by a direct effect on the carotid O2 chemoreceptors.  相似文献   

12.
Carbon dioxide effects on the ventilatory response to sustained hypoxia   总被引:1,自引:0,他引:1  
We examined the interrelation between CO2 and the ventilatory response to moderate (80% arterial saturation) sustained hypoxia in normal young adults. On a background of continuous CO2-stimulated hyperventilation, hypoxia was introduced and sustained for 25 min. Initially, with the introduction of hypoxia onto hypercapnia, there was a brisk additional increase in inspiratory minute ventilation (VI) to 284% of resting VI, but the response was not sustained and hypoxic VI declined by 36% to a level intermediate between the initial increase and the preexisting hypercapnic hyperventilation. Through the continuous hypercapnia, the changes in hypoxic ventilation resulted from significant alterations in tidal volume (VT) and mean inspiratory flow (VT/TI) without changes in respiratory timing. In another experiment, sustained hypoxia was introduced on the usual background of room air, either with isocapnia or without maintenance of end-tidal CO2 (ETCO2) (poikilocapnic hypoxia). Regardless of the degree of maintenance of ETCO2, during 25 min of sustained hypoxia, VI showed an initial brisk increase and then declined by 35-40% of resting VI to a level intermediate between the initial response and resting room air VI. For both isocapnia and poikilocapnic conditions, the attenuation of VI was an expression of a diminished VT. Thus the decline in ventilation with sustained hypoxia occurred regardless of the background ETCO2, suggesting that the mechanism underlying the hypoxic decline is independent of CO2.  相似文献   

13.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

14.
Exponential and diphasic ventilatory response to hypoxia in conscious lambs   总被引:2,自引:0,他引:2  
This study was undertaken to test the hypothesis that in the neonate the hypoxic chemoreflex drive adapts to steady-state hypoxia but not to progressive hypoxia. First we have compared the ventilatory (VE) response of 2-day-old conscious lambs to steady-state hypoxia with their response to progressive hypoxia. Second, we have quantified the chemoreceptor excitatory function operating at the end of each period of hypoxia by studying the immediate VE response to the withdrawal of the hypoxic stimulus. Lambs responded to steady-state hypoxia [fractional concentration of inspired O2 (FIO2) = 0.08] by a diphasic VE response but responded to progressive hypoxia (FIO2 0.21-0.08) by an exponential VE increase. Hyperventilation in steady-state hypoxia was transient; VE increased immediately from 532 to a mean peak response of 712 ml X kg-1 X min-1 and decreased to 595 ml X kg-1. min-1 within 10 min. With progressive hypoxia, VE increased within 13 min from 514 to 705 ml X kg-1 X min-1. At the end of steady-state and progressive hypoxia the abrupt withdrawal of the hypoxic drive caused an instantaneous VE decrease to 390 and 399 ml X kg-1 X min-1, respectively; the VE decrease was respectively 306 and 205 ml X kg-1 X min-1 (P less than 0.05). This demonstrates that during steady-state hypoxia the lambs had suffered a loss of one third of the chemoreceptor excitatory function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
In adult humans the ventilatory response to sustained hypoxia (VRSH) is biphasic, characterized by an initial brisk increase, due to peripheral chemoreceptor (PC) stimulation, followed by a decline attributed to central depressant action of hypoxia. To study the effects of selective stimulation of PC on the ventilatory response pattern to hypoxia, the VRSH was evaluated after pretreatment with almitrine (A), a PC stimulant. Eight subjects were pretreated with A (75 mg po) or placebo (P) on 2 days in a single-blind manner. Two hours after drug administration, they breathed, in succession, room air (10 min), O2 (5 min), room air (5 min), hypoxia [25 min, arterial O2 saturation (SaO2) = 80%], O2 (5 min), and room air (5 min). End-tidal CO2 was kept constant at the normoxic base-line values. Inspiratory minute ventilation (VI) and breathing patterns were measured over the last 2 min of each period and during minutes 3-5 of hypoxia, and nadirs in VI were assessed just before and after O2 exposure. Independent of the day, the VRSH was biphasic. With P and A pretreatment, early hypoxia increased VI 4.6 +/- 1 and 14.2 +/- 1 (SE) l/min, respectively, from values obtained during the preceding room-air period. On A day the hypoxic ventilatory decline was significantly larger than that on P day, and on both days the decline was a constant fraction of the acute hypoxic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号