首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H(2)), but little is known about the diffusion of H(2) toward the active site. Here we analyze pathways for H(2) permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H(2) easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H(2) molecules that reach the active site made their approach from the side of the Ni ion. H(2) is able to reach distances of <4 A from the active site, although after 6 A permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H(2) inside the protein and at lower distances from the active site. This valine can be a control point in the H(2) access to the active center.  相似文献   

2.
For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.  相似文献   

3.
Hydrogenases, abundant proteins in the microbial world, catalyze cleavage of H2 into protons and electrons or the evolution of H2 by proton reduction. Hydrogen metabolism predominantly occurs in anoxic environments mediated by hydrogenases, which are sensitive to inhibition by oxygen. Those microorganisms, which thrive in oxic habitats, contain hydrogenases that operate in the presence of oxygen. We have selected the H2-sensing regulatory [NiFe] hydrogenase of Ralstonia eutropha H16 to investigate the molecular background of its oxygen tolerance. Evidence is presented that the shape and size of the intramolecular hydrophobic cavities leading to the [NiFe] active site of the regulatory hydrogenase are crucial for oxygen insensitivity. Expansion of the putative gas channel by site-directed mutagenesis yielded mutant derivatives that are sensitive to inhibition by oxygen, presumably because the active site has become accessible for oxygen. The mutant proteins revealed characteristics typical of standard [NiFe] hydrogenases as described for Desulfovibrio gigas and Allochromatium vinosum. The data offer a new strategy how to engineer oxygen-tolerant hydrogenases for biotechnological application.  相似文献   

4.
The Ni-A and the Ni-B forms of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F have been studied in single crystals by continuous wave and pulsed EPR spectroscopy at different temperatures (280?K, 80?K, and 10?K). For the first time, the orientation of the g-tensor axes with respect to the recently published atomic structure of the active site at 1.8?Å resolution was elucidated for Ni-A and Ni-B. The determined g-tensors have a similar orientation. The configuration of the electronic ground state is proposed to be Ni(III) 3d 1 z2 for Ni-A and Ni-B. The g z principal axis is close to the Ni-S(Cys549) direction; the g x and the g y axes are approximately along the Ni-S(Cys546) and Ni-S(Cys81) bonds, respectively. It is proposed that the difference between the Ni-A and Ni-B states lies in a protonation of the bridging ligand between the Ni and the Fe.  相似文献   

5.
Direct x-ray analysis has been used to determine the crystal structure of [D-Hyi2, L-Hyi4]meso-valinomycin (cyclo[-D-Val-D-Hyi-L-Val-L-Hyi-(D-Val-L-Hyi-L-Val-D-+ ++Hyi)2-], C60H102N6O18), which crystallized from acetone with two solvent molecules. The crystals are trigonal, space group P32, number of molecules per unit cell Z = 3, cell parameters a = b = 15.2085 (8) A, c = 29.3250 (9) A, gamma = 120 degrees. The standard (R) and weighted (Rw) reliability factors after refinement of the atomic coordinates for C, N, and O atoms in the anisotropic thermal motion approximation, allowing for isotropic H atom contributions, were 0.070 and 0.082, respectively. The molecule adopts a distorted bracelet structure which is stabilized by six N-H ... O = C 4----1 type intramolecular hydrogen bonds. The side chains predominantly occupy external pseudoaxial positions relative to the cylindrical axis of the molecule. In contrast to meso-valinomycin, only four of the six Val carbonyl oxygen atoms are directed inwards to form a coordination centre for the molecule, and the carbonyl oxygen atoms of residues D-Val1 and L-Val3 are twisted outward and point away from the centre of the molecule. Although the analogue has a partially formed ion-binding center, it is inaccessible because the hydrophobic isopropyl groups of the D-Hyi2 and L-Hyi4 residues screen the molecular cavity on both sides.  相似文献   

6.
In this study we report on thus-far unobserved proton hyperfine couplings in the well-known EPR signals of [NiFe] hydrogenases. The preparation of the enzyme in several highly homogeneous states allowed us to carefully re-examine the Ni(u)*, Ni(r)*, Ni(a)-C* and Ni(a)-L* EPR signals which are present in most [NiFe] hydrogenases. At high resolution (modulation amplitude 0.57 G), clear indications for hyperfine interactions were observed in the g(z) line of the Ni(r)* EPR signal. The hyperfine pattern became more pronounced in 2H2O. Simulations of the spectra suggested the interaction of the Ni-based unpaired electron with two equivalent, non-exchangeable protons (A1,2=13.2 MHz) and one exchangeable proton (A3=6.6 MHz) in the Ni(r)* state. Interaction with an exchangeable proton could not be observed in the Ni(u)* EPR signal. The identity of the three protons is discussed and correlated to available ENDOR data. It is concluded that the NiFe centre in the Ni(r)* state contains a hydroxide ligand bound to the nickel, which is pointing towards the gas channel rather than to iron.  相似文献   

7.
The H2-splitting active site of [NiFe] hydrogenases is tightly bound to the protein matrix via four conserved cysteine residues. In this study, the nickel-binding cysteine residues of HoxC, the large subunit of the H2-sensing regulatory hydrogenase (RH) from Ralstonia eutropha, were replaced by serine. All four mutant proteins, C60S, C63S, C479S, and C482S, were inactive both in H2 sensing and H2 oxidation and did not adopt the native oligomeric structure of the RH. Nickel was bound only to the C482S derivative. The assembly of the [NiFe] active site is a complex process that requires the function of at least six accessory proteins. Among these proteins, HypC has been shown to act as a chaperone for the large subunit during the maturation process. Immunoblot analysis revealed the presence of a strong RH-dependent HypC-specific complex in extracts containing the C60S, C63S, and C482S derivatives, pointing to a block in maturation for these mutant proteins. The lack of this complex in the extract containing C479S indicates that this specific cysteine residue might be crucial for the interaction between HoxC and HypC.This work is dedicated to Prof. H.G. Schlegel on the occasion of his 80th birthday.  相似文献   

8.
The soluble NAD+-reducing Ni-Fe hydrogenase (SH) from Ralstonia eutropha H16 is remarkable because it cleaves hydrogen in the presence of dioxygen at a unique Ni-Fe active site (Burgdorf et al. (2005) J. Am. Chem. Soc. 127, 576). By X-ray absorption (XAS), FTIR, and EPR spectroscopy, we monitored the structure and oxidation state of its metal centers during H2 turnover. In NADH-activated protein, a change occurred from the (CN)O2Ni(II)(mu-S)2Fe(II)(CN)3(CO) site dominant in the wild-type SH to a standard-like S2Ni(II)(mu-S)2Fe(II)(CN)2(CO) site as the prevailing species in a specific mutant protein, HoxH-H16L. The wild-type SH primarily was active in H2 cleavage. The nonstandard reaction mechanism does not involve stable EPR-detectable trivalent Ni oxidation states, namely, the Ni-A,B,C states as observed in standard hydrogenases. In the HoxH-mutant protein H16L, H2 oxidation was impaired, but H2 production occurred via a stable Ni-C state (Ni(III)-H(-)-Fe(II)), suggesting a reaction sequence similar to that of standard hydrogenases. It is proposed that reductive activation by NADH of both wild-type and H16L proteins causes the release of an oxygen species from Ni and is initiated by electron transfer from a [2Fe-2S] cluster in the HoxU subunit that at first becomes reduced by electrons from NADH. Electrons derived from H2 cleavage, on the other hand, are transferred to NAD+ via a different pathway involving a [4Fe-4S] cluster in HoxY, which is reducible only in wild-type SH but not in the H16L variant.  相似文献   

9.
Molecular features that allow certain [NiFe] hydrogenases to catalyze the conversion of molecular hydrogen (H(2)) in the presence of dioxygen (O(2)) were investigated. Using X-ray absorption spectroscopy (XAS), we compared the [NiFe] active site and FeS clusters in the O(2)-tolerant membrane-bound hydrogenase (MBH) of Ralstonia eutropha and the O(2)-sensitive periplasmic hydrogenase (PH) of Desulfovibrio gigas. Fe-XAS indicated an unusual complement of iron-sulfur centers in the MBH, likely based on a specific structure of the FeS cluster proximal to the active site. This cluster is a [4Fe4S] cubane in PH. For MBH, it comprises less than ~2.7 ? Fe-Fe distances and additional longer vectors of ≥3.4 ?, consistent with an Fe trimer with a more isolated Fe ion. Ni-XAS indicated a similar architecture of the [NiFe] site in MBH and PH, featuring Ni coordination by four thiolates of conserved cysteines, i.e., in the fully reduced state (Ni-SR). For oxidized states, short Ni-μO bonds due to Ni-Fe bridging oxygen species were detected in the Ni-B state of the MBH and in the Ni-A state of the PH. Furthermore, a bridging sulfenate (CysSO) is suggested for an inactive state (Ni(ia)-S) of the MBH. We propose that the O(2) tolerance of the MBH is mainly based on a dedicated electron donation from a modified proximal FeS cluster to the active site, which may favor formation of the rapidly reactivated Ni-B state instead of the slowly reactivated Ni-A state. Thereby, the catalytic activity of the MBH is facilitated in the presence of both H(2) and O(2).  相似文献   

10.
[NiFe] hydrogenases contain a highly conserved histidine residue close to the [NiFe] active site which is altered by a glutamine residue in the H(2)-sensing [NiFe] hydrogenases. In this study, we exchanged the respective glutamine residue of the H(2) sensor (RH) of Ralstonia eutropha, Q67 of the RH large subunit HoxC, by histidine, asparagine and glutamate. The replacement by histidine and asparagine resulted in slightly unstable RH proteins which were hardly affected in their regulatory and enzymatic properties. The exchange to glutamate led to a completely unstable RH protein. The purified wild-type RH and the mutant protein with the Gln/His exchange were analysed by continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques. We observed a coupling of a nitrogen nucleus with the [NiFe] active site for the mutant protein which was absent in the spectrum of the wild-type RH. A combination of theoretical calculations with the experimental data provided an explanation for the observed coupling. It is shown that the coupling is due to the formation of a weak hydrogen bond between the protonated N(epsilon) nucleus of the histidine with the sulfur of a conserved cysteine residue which coordinates the metal atoms of the [NiFe] active site as a bridging ligand. The effect of this hydrogen bond on the local structure of the [NiFe] active site is discussed.  相似文献   

11.
Human angiogenin (Ang) is an unusual homolog of bovine pancreatic RNase A that utilizes its ribonucleolytic activity to induce the formation of new blood vessels. The pyrimidine-binding site of Ang was shown previously to be blocked by glutamine 117, indicating that Ang must undergo a conformational change to bind and cleave RNA. The mechanism and nature of this change are not known, and no Ang-inhibitor complexes have been characterized structurally thus far. Here, we report crystal structures for the complexes of Ang with the inhibitors phosphate and pyrophosphate, and the structure of the complex of the superactive Ang variant Q117G with phosphate, all at 2.0 A resolution. Phosphate binds to the catalytic site of both Ang and Q117G in essentially the same manner observed in the RNase A-phosphate complex, forming hydrogen bonds with the side chains of His 13, His 114, and Gln 12, and the main chain of Leu 115; it makes an additional interaction with the Lys 40 ammonium group in the Ang complex. One of the phosphate groups of pyrophosphate occupies a similar position. The other phosphate extends toward Gln 117, and lies within hydrogen-bonding distance from the side-chain amide of this residue as well as the imidazole group of His 13 and the main-chain oxygen of Leu 115. The pyrimidine site remains obstructed in all three complex structures, that is, binding to the catalytic center is not sufficient to trigger the conformational change required for catalytic activity, even in the absence of the Gln 117 side chain. The Ang-pyrophosphate complex structure suggests how nucleoside pyrophosphate inhibitors might bind to Ang; this information may be useful for the design of Ang antagonists as potential anti-angiogenic drugs.  相似文献   

12.
In proteobacteria capable of H(2) oxidation under (micro)aerobic conditions, hydrogenase gene expression is often controlled in response to the availability of H(2). The H(2)-sensing signal transduction pathway consists of a heterodimeric regulatory [NiFe]-hydrogenase (RH), a histidine protein kinase and a response regulator. To gain insights into the signal transmission from the Ni-Fe active site in the RH to the histidine protein kinase, conserved amino acid residues in the L0 motif near the active site of the RH large subunit of Ralstonia eutropha H16 were exchanged. Replacement of the strictly conserved Glu13 (E13N, E13L) resulted in loss of the regulatory, H(2)-oxidizing and D(2)/H(+) exchange activities of the RH. According to EPR and FTIR analysis, these RH derivatives contained fully assembled [NiFe] active sites, and para-/ortho-H(2) conversion activity showed that these centres were still able to bind H(2). This indicates that H(2) binding at the active site is not sufficient for the regulatory function of H(2) sensors. Replacement of His15, a residue unique in RHs, by Asp restored the consensus of energy-linked [NiFe]-hydrogenases. The respective RH mutant protein showed only traces of H(2)-oxidizing activity, whereas its D(2)/H(+)-exchange activity and H(2)-sensing function were almost unaffected. H(2)-dependent signal transduction in this mutant was less sensitive to oxygen than in the wild-type strain. These results suggest that H(2) turnover is not crucial for H(2) sensing. It may even be detrimental for the function of the H(2) sensor under high O(2) concentrations.  相似文献   

13.
Hydrogenases catalyze oxidoreduction of molecular hydrogen and have potential applications for utilizing dihydrogen as an energy source. [NiFe] hydrogenase has two different oxidized states, Ni-A (unready, exhibits a lag phase in reductive activation) and Ni-B (ready). We have succeeded in converting Ni-B to Ni-A with the use of Na2S and O2 and determining the high-resolution crystal structures of both states. Ni-B possesses a monatomic nonprotein bridging ligand at the Ni-Fe active site, whereas Ni-A has a diatomic species. The terminal atom of the bridging species of Ni-A occupies a similar position as C of the exogenous CO in the CO complex (inhibited state). The common features of the enzyme structures at the unready (Ni-A) and inhibited (CO complex) states are proposed. These findings provide useful information on the design of new systems of biomimetic dihydrogen production and fuel cell devices.  相似文献   

14.

Background  

In kinetic crystallography, the usually static method of X-ray diffraction is expanded to allow time-resolved analysis of conformational rearrangements in protein structures. To achieve this, reactions have to be triggered within the protein crystals of interest, and optical spectroscopy can be used to monitor the reaction state. For this approach, a modified form of H-Ras p21 was designed which allows reaction initiation and fluorescence readout of the initiated GTPase reaction within the crystalline state. Rearrangements within the crystallized protein due to the progressing reaction and associated heterogeneity in the protein conformations have to be considered in the subsequent refinement processes.  相似文献   

15.
The inactive forms, unready (Ni-A, Ni-SU) and ready (Ni-B), of NiFe hydrogenases are modeled by examining the possibility of hydroxo, oxo, hydroperoxo, peroxo, and sulfenate groups in active-site models and comparing predicted IR frequencies and g tensors with those of the enzyme. The best models for Ni-A and Ni-SU have hydroxo (μ-OH) bridges between Fe and Ni and a terminal sulfenate [Ni–S(=O)Cys] group, although a hydroperoxo model for Ni-A is also quite viable, whereas the best model for Ni-B has only a μ-OH bridge. In addition, a mechanism for the activation of unready hydrogenase is proposed on the basis of the relative stabilities of sulfenate models versus peroxide models.  相似文献   

16.
17.
We have applied density functional theory, using both pure (BP86) and hybrid (B3LYP and B3LYP*) functionals, to investigate structural parameters and reaction energies for nickel(II)-sulfur coordination compounds, as well as for small cluster models of the Ni-SI and Ni-R redox state of [NiFe] hydrogenases. Results obtained investigating experimentally well-characterized complexes show that BP86 is well suited to describe the structural features of this class of compounds. However, the singlet-triplet energy splitting and even the computed ground state are strongly dependent on the applied functional. Results for the cluster models of [NiFe] hydrogenases lead to the conclusion that in the reduced protein structures characterized by X-ray diffraction a hydride bridges the two metal centres. The energy splitting of the singlet and triplet states in Ni-R and Ni-SI models is calculated to be very small and may be overcome at room temperature to allow a spin crossover. Moreover, the relative stability of the Ni-SI and Ni-R structures adopted in the present investigation is fully compatible with their involvement in the reversible heterolytic cleavage of H(2).  相似文献   

18.
The structurally characterized molybdoenzyme carbon monoxide dehydrogenase (CODH) catalyzes the oxidation of CO to CO2 in the aerobic bacterium Oligotropha carboxidovorans. The active site of the enzyme was studied by Mo- and Cu-K-edge X-ray absorption spectroscopy. This revealed a bimetallic [Cu(I)SMo(VI)(double bond O)2] cluster in oxidized CODH which was converted into a [Cu(I)SMo(IV)(double bond O)OH2] cluster upon reduction. The Cu...Mo distance is 3.70 A in the oxidized form and is increased to 4.23 A upon reduction. The bacteria contain CODH species with the complete and functional bimetallic cluster along with enzyme species deficient in Cu and/or bridging S. The latter are precursors in the posttranslational biosynthesis of the metal cluster. Cu-deficient CODH is the most prominent precursor and contains a [HSMo(double bond O)OH2] cluster. Se-K-edge X-ray absorption spectroscopy demonstrates that Se is coordinated by two C atoms at 1.94-1.95 A distance. This is interpreted as a replacement of the S in methionine residues. In contrast to a previous report [Dobbek, H., Gremer, L., Meyer, O., and Huber, R. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8884-8889] Se was not identified in the active site of CODH.  相似文献   

19.
A Fourier transform infrared (FTIR) difference spectrum of the oxygen-evolving Mn cluster upon the S(1)-to-S(2) transition was obtained with Ca(2+)-depleted photosystem II (PSII) membranes to investigate the structural relevance of Ca(2+) to the Mn cluster. Previously, Noguchi et al. [Biochim. Biophys. Acta 1228 (1995) 189] observed drastic changes in the carboxylate stretching region of the S(2)/S(1) FTIR spectrum upon Ca(2+) depletion, whereas Kimura and co-workers [Biochemistry 40 (2001) 14061; ibid. 41 (2002) 5844] later claimed that these changes were not ascribed to Ca(2+) depletion itself but caused by the interaction of EDTA to the Mn cluster and/or binding of K(+) at the Ca(2+) site. In the present study, the preparation of the Ca(2+)-depleted PSII sample and its FTIR measurement were performed in the absence of EDTA and K(+). The obtained S(2)/S(1) spectrum exhibited the loss of carboxylate bands at 1587/1562 and 1364/1403 cm(-1) and diminished amide I intensities, which were identical to the previous observations in the presence of EDTA and K(+). This result indicates that the drastic FTIR changes are a pure effect of Ca(2+) depletion, and provides solid evidence for the general view that Ca(2+) is strongly coupled with the Mn cluster.  相似文献   

20.
2-Oxoquinoline 8-monooxygenase is a Rieske non-heme iron oxygenase that catalyzes the NADH-dependent oxidation of the N-heterocyclic aromatic compound 2-oxoquinoline to 8-hydroxy-2-oxoquinoline in the soil bacterium Pseudomonas putida 86. The crystal structure of the oxygenase component of 2-oxoquinoline 8-monooxygenase shows a ring-shaped, C3-symmetric arrangement in which the mononuclear Fe(II) ion active site of one monomer is at a distance of 13 A from the Rieske-[2Fe-2S] center of a second monomer. Structural analyses of oxidized, reduced, and substrate bound states reveal the molecular bases for a new function of Fe-S clusters. Reduction of the Rieske center modulates the mononuclear Fe through a chain of conformational changes across the subunit interface, resulting in the displacement of Fe and its histidine ligand away from the substrate binding site. This creates an additional coordination site at the mononuclear Fe(II) ion and can open a pathway for dioxygen to bind in the substrate-containing active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号