首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. An enzyme (EC 2.8.2.1) that catalyses the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to phenols was purified approx. 2000-fold from male rat livers. 2. The purified preparation did not catalyse the sulphurylation of dehydroepiandrosterone, butan-1-ol, l-tyrosine methyl ester, 1-naphthylamine or serotonin. 3. At pH8.0 and 37 degrees C the K(m) values of the enzyme for p-nitrophenol and adenosine 3'-phosphate 5'-sulphatophosphate are 51 and 14mum respectively. The K(m) value for either substrate is independent of the concentration of the other. 4. The sulphurylation of phenol is inhibited by thiol compounds and glutathione at a concentration of 3mm caused an approx. 50% decrease in enzyme activity. 5. The K(m) of the enzyme for adenosine 3'-phosphate 5'-sulphatophosphate is unaffected by the presence of added glutathione but at a concentration of 5mm-glutathione the K(m) of the enzyme for its phenolic substrate is decreased.  相似文献   

2.
1. The kinetics of the enzymic transfer of sulphate from adenosine 3'-phosphate 5'[(35)S]-sulphatophosphate to derivatives of l-tyrosine were investigated with a partially purified enzyme preparation from rat liver. 2. At pH7.5 and 37 degrees C the K(m) values for l-tyrosine methyl ester and adenosine 3'-phosphate 5'[(35)S]-sulphatophosphate are 0.3mm and 8nm respectively. The K(m) value for either substrate is independent of the concentration of the other. The available data are consistent with the sulphation reaction proceeding according to a rapid-equilibrium random Bi Bi mechanism. 3. From the effect of pH on the K(m) and V(max.) values for l-tyrosine methyl ester, tyramine and N-acetyl-l-tyrosine ethyl ester it is concluded that the enzyme is specific for substrate molecules with a free and unprotonated amino group and an un-ionized hydroxyl group. 4. The only ionizing group that can be positively attributed to the enzyme appears to influence the binding of adenosine 3'-phosphate 5'[(35)S]-sulphatophosphate and has an apparent pK value of approx. 9.5. It is suggested that this group may be an essential thiol. 5. The enzyme is inhibited by iodoacetamide at pH7.5 and 30 degrees C and this inhibition is prevented by the presence of adenosine 3'-phosphate 5'[(35)S]-sulphatophosphate but not by l-tyrosine methyl ester.  相似文献   

3.
3'-Phosphoadenosine-5'-phosphosulphate-dependent enzymes that catalyse sulphation of p-nitrophenol have been purified from rat kidney and stomach mucosa by affinity chromatography on the p-hydroxyphenylacetic acid-agarose conjugate, by chromatography on DEAE-cellulose and Sephadex G-100. The phenol sulphotransferase (PST) from rat kidney had Mr of 69 000 and that of the stomach enzyme was 32 000. With p-nitrophenol as the sulphate acceptor, the pH optima were 6.4 for the stomach PST and 5.4 and 6.6 for the kidney enzyme. Both enzymes were inhibited by 2,6-dichloro-4-nitrophenol and phenylglyoxal, an arginine specific modifying reagent. Both enzymes readily sulphated p-nitrophenol, 2-naphthol, 1-naphthol and salicylamide and did not act on biogenic amines (e.g. epinephrine, norepinephrine, dopamine, serotonin), acid metabolites of catecholamines (e.g. 3,4-dihydroxyphenylacetic acid, homovanillic acid), and O-methylated metabolites of catecholamines. Only the stomach enzyme sulphated such catecholamine metabolites as homovanillic alcohol and 3-methoxy-4-hydroxyphenylglycol. In contrast to the brain enzyme, but similarly to the liver enzyme, the kidney and stomach phenol sulphotransferases appear to sulphate exogenous phenolic substrates in preference to potential endogenous substrates.  相似文献   

4.
1. An enzyme that catalyses the transfer of sulphate from adenosine 3′-phosphate 5′[35S]-sulphatophosphate to l-tyrosine methyl ester and tyramine was purified approx. 70-fold from female rat livers. 2. The partially purified preparation is still contaminated with adenosine 3′-phosphate 5′-sulphatophosphate–phenol sulphotransferase (EC 2.8.2.1), but a partial separation of the two enzymes can be achieved by chromatography on columns of Sephadex G-200 and DEAE-Sephadex. 3. The enzyme responsible for the sulphation of l-tyrosine methyl ester and tyramine is activated by dithiothreitol, 2-mercaptoethanol and GSH, the degree of activation being more marked with preparations previously stored at 0 or −10°C. In contrast, the enzymic sulphation of p-nitrophenol is inhibited by all three thiols. Again, there is a quantitative difference in the degree of inhibition of the two enzymes by o-iodosobenzoate, p-chloromercuribenzoate, N-ethylmaleimide and iodoacetate. 4. Mixed-substrate experiments support the hypothesis that the enzyme responsible for the sulphation of l-tyrosine methyl ester and tyramine is separate from that responsible for the sulphation of p-nitrophenol. However, p-nitrophenol is a potent inhibitor of the sulphation of both tyrosyl derivatives whereas these latter compounds have no effect on the sulphation of p-nitrophenol.  相似文献   

5.
The formation of sulpho-conjugates of 3,4-dihydroxyphenylethylamine (dopamine) and related compounds was examined in preparations of rat tissues. Liver high-speed-supernatant preparations readily transferred sulphate from adenosine 3'-phosphate 5'-sulphato-phosphate to dopamine under standard conditions. The main product was identified as the 3-O-sulphate. The preparation also sulphated the 3- and 4-methoxy derivatives but to a lesser extent (44% and 95% respectively) relative to dopamine. Brain preparations possessed only half the activity of liver but formed both the 3- and 4-O-sulphates in the molar ratio of 1.7:1. l-3,4-Dihydroxyphenylalanine (l-dopa) in both tissue preparations did not yield any significant amount of sulpho-conjugate when the dopa decarboxylase present was inhibited. The sulphotransferase activity of preparations was doubled in the presence of dithiothreitol and it was concluded that l-tyrosine methyl ester sulphotransferase was the enzyme involved. A method for the preparation of authentic dopamine 3-O-sulphate and 4-O-sulphate was developed.  相似文献   

6.
Polgár L 《Biochemistry》1999,38(47):15548-15555
Oligopeptidase B, a member of the novel prolyl oligopeptidase family of serine peptidases, is involved in cell invasion by trypanosomes. The kinetic analysis of the reactions of oligopeptidase B, which preferentially cleaves peptides at two adjacent basic residues, has revealed significant differences from the trypsin-like serine peptidases. (i) The pH dependence of k(cat)/K(m) deviates from normal bell-shaped curves due to ionization of an enzymatic group characterized by a macroscopic pK(a) of approximately 8.3. The effect of this group is abolished at high ionic strength. (ii) The second-order acylation rate constants, k(cat)/K(m), are similar with the ester and the corresponding amide substrates, suggesting that their chemical reactivity does not prevail in the rate-limiting step. The kinetic deuterium isotope effects indicate that the rate-limiting step for k(cat)/K(m) is principally governed by conformational changes. (iii) The pH-k(cat)/K(m) profile and the very low rate constant for benzoyl-citrulline ethyl ester reveal a new kinetically influential group ionizing below the pK(a) of the active site histidine and indicate that the positive charge of arginine is essential for effective catalysis. (iv) The enzyme is inhibited by high concentrations of substrate. The mechanism of inhibition markedly varies with the reaction conditions. (v) The optimum temperature for the reactions of amide substrates is unusually low, slightly below 25 degrees C, whereas with benzoyl-arginine ethyl ester a linear Eyring plot is obtained up to 39 degrees C. The positive entropies of activation point to substantial reorganization of water molecules upon substrate binding.  相似文献   

7.
Minoxidil (Mx), a pyrimidine N-oxide, is used therapeutically as an antihypertensive agent and to induce hair growth in patients with male pattern baldness. Mx NO-sulphate has been implicated as the agent active in producing these effects. This paper describes the purification of a unique sulphotransferase (ST) from rat liver cytosol that is capable of catalysing the sulphation of Mx. By using DEAE-Sepharose CL-6B chromatography, hydroxyapatite chromatography and ATP-agarose affinity chromatography, Mx-ST activity was purified 240-fold compared with the activity in cytosol. The purified enzyme was also capable of sulphating p-nitrophenol (PNP) at low concentrations (less than 10 microM). Mx-ST was purified to homogeneity, as evaluated by SDS/PAGE and reverse-phase h.p.l.c. The active form of the enzyme had a molecular mass of 66,000-68,000 Da as estimated by gel exclusion chromatography and a subunit molecular mass of 35,000 Da. The apparent Km values for Mx, 3'-phosphoadenosine 5'-phosphosulphate and PNP were 625 microM, 5.0 microM and 0.5 microM respectively. However, PNP displayed potent substrate inhibition at concentrations above 1.2 microM. Antibodies raised in rabbits to the pure enzyme detected a single band in rat liver cytosol with a subunit molecular mass of 35,000 Da, as determined by immunoblotting. The anti-(rat Mx-ST) antibodies also reacted with the phenol-sulphating form of human liver phenol sulphotransferase, suggesting some structural similarity between these proteins.  相似文献   

8.
Triton X-100 extracts of rat brain microsomal fraction catalyse the formation of sulphogalactosyldiacylglycerol from galactosyldiacylglycerol and adenosine 3'-phosphate 5'-sulphatophosphate. Of the various subcellular fractions of brain assayed, the microsomal fraction contained most (79%) of the adenosine 3'-phosphate 5'-sulphatophosphate-galactosyldiacylglycerol sulphotransferase activity. The enzyme activity was stimulated by Triton X-100 and showed linearity with increasing time, concentrations of enzyme and added substrates. ATP and KF prolonged the linearity of the activity with time, but ATP had an overall inhibitory effect on the sulphotransferase. Both ATP and KF inhibit the degradation of adenosine 3'-phosphate 5'-sulphatophosphate, which probably causes the increased linearity of the sulphotransferase reaction with time. The enzyme preparation did not catalyse the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to either cholesterol or galabiosyldiacylglycerol (galactosylgalactosyldiacylglycerol). Significant differences between the formation of sulphogalactosyldiacylglycerol and cerebroside sulphate catalysed by the same enzyme preparation were noted. ATP and Mg(2+) strongly inhibit the formation of sulphogalactosyldiacylglycerol but equally strongly stimulate the synthesis of cerebroside sulphate. The apparent K(m) for galactosyldiacylglycerol is 200mum, and that for cerebroside is 45mum. Galactosyldiacylglycerol and cerebroside are mutually inhibitory toward the synthesis of sulphated derivatives of each. These data do not necessarily lead to the conclusion that two sulphotransferases are present, but they do indicate a possible means of controlling the synthesis of these two sulpholipids.  相似文献   

9.
1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [(35)S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1.5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3'-phosphate 5'-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed.  相似文献   

10.
l-Tyrosine, l-[3,4]dihydroxyphenylalanine (l-DOPA), and dopamine are known to be in vitro substrates for Schistosoma mansoni phenol oxidase. Since all three compounds are present in the female schistosome, it is not clear which one serves as the substrate for phenol oxidase in intact S. mansoni. However, the concentration of l-tyrosine in the female schistosome (252 ng/mg worm) is 4-fold higher than the Km of phenol oxidase for this amino acid while the concentrations of l-DOPA and dopamine (0.954 and 0.790 ng/mg worm, respectively) are 100- and 500-fold lower than the Km of these substrates. Tri-l-tyrosine methyl ester is oxidized at less than 3% of the rate of l-tyrosine methyl ester. A tyrosine:lysine peptide and chymotrypsinogen are not oxidized. Female S. mansoni do not incorporate l-tyrosine into proteins to a significantly greater extent than l-leucine. The results suggest that free l-tyrosine is the substrate for S. mansoni phenol oxidase in vivo.  相似文献   

11.
An ultraviolet absorption difference spectrum that is typical of a change in ionization state (pKa 9.7 leads to greater than 11.5) of a tyrosyl residue has been observed on the binding between Streptomyces subtilisin inhibitor (SSI) and subtilisin BPN' [EC 3.4.21.14] at alkaline pH, ionic strength 0.1 M, at 25 degrees C (Inouye, K., Tonomura, B., and Hiromi, K., submitted). When the complex of SSI and subtilisin BPN' is formed at an ionic strength of 0.6 M and pH 9.70, the characteristic features of the protonation of a tyrosyl residue in the difference spectrum are diminished. These results suggest that the pKa-shift of a tyrosyl residue observed at alkaline pH and lower ionic strength results from an electrostatic interaction. Nitration of tyrosyl residues of SSI and of subtilisin BPN' was performed with tetranitromethane (TNM). By measurements of the difference spectra observed on the binding of the tyrosyl-residue-nitrated SSI and the native subtilisin BPN', and on the binding of the native SSI and the tyrosyl-residue-nitrated subtilisin BPN' and alkaline pH, the tyrosyl residue in question was shown to be one out of the five tyrosyl residues of pKa 9.7 of the enzyme. This tyrosyl residue was probably either Tyr 217 or Tyr 104 on the basis of the reactivities of tyrosyl residues of the enzyme with TNM and their locations on the enzyme molecule. Carboxyl groups of SSI were modified by covalently binding glycine methyl ester with the aid of water-soluble carbodiimide, in order to neutralize the negative charges on SSI. In the difference spectrum which was observed on the binding of subtilisin BPN' and the 5.3-carboxyl-group-modified SSI at alkaline pH, the characteristic features of the protonation of a tyrosyl residue were essentially lost, and the difference spectrum is rather similar to that observed on the binding of the native SSI and the enzyme at neutral pH. This phenomenon indicates that the pKa of a tyrosyl residue of the enzyme is shifted upwards by interaction with carboxyl group(s) of SSI on the formation of the enzyme-inhibitor complex.  相似文献   

12.
Human liver steroid sulphotransferase sulphates bile acids.   总被引:4,自引:0,他引:4       下载免费PDF全文
The sulphation of bile acids is an important pathway for the detoxification and elimination of bile acids during cholestatic liver disease. A dehydroepiandrosterone (DHEA) sulphotransferase has been purified from male and female human liver cytosol using DEAE-Sepharose CL-6B and adenosine 3',5'-diphosphate-agarose affinity chromatography [Falany, Vazquez & Kalb (1989) Biochem. J. 260, 641-646]. Results in the present paper show that the DHEA sulphotransferase, purified to homogeneity, is also reactive towards bile acids, including lithocholic acid and 6-hydroxylated bile acids, as well as 3-hydroxylated short-chain bile acids. The highest activity towards bile acids was observed with lithocholic acid (54.3 +/- 3.6 nmol/min per mg of protein); of the substrates tested, the lowest activity was detected with hyodeoxycholic acid (4.2 +/- 0.01 nmol/min per mg of protein). The apparent Km values for the enzyme are 1.5 +/- 0.31 microM for lithocholic acid and 4.2 +/- 0.73 microM for taurolithocholic acid. Lithocholic acid also competitively inhibits DHEA sulphation by the purified sulphotransferase (Ki 1.4 microM). No evidence was found for the formation of bile acid sulphates by sulphotransferases different from the DHEA sulphotransferase during purification work. The above results suggest that a single steroid sulphotransferase with broad specificity encompassing neutral steroids and bile acids exists in human liver.  相似文献   

13.
Ester synthesis in aqueous media in the presence of various lipases   总被引:1,自引:0,他引:1  
Summary The ability of seven lipase preparations to catalyse methyl ester synthesis in aqueous media was compared and the synthesis reaction (esterification or alcoholysis) determined. Three behaviours were observed: three enzymes catalysed ester synthesis by esterification of free fatty acids and one enzyme catalysed alcoholysis but the other three lipases did not catalyse a net ester synthesis under the conditions tested. The three groups also differed by the influence of methanol on the hydrolysis reaction. The first group was not significantly inhibited up to the highest methanol concentration tested (5 M). Hydrolysis in the presence of the enzyme of the second group was increasingly inhibited with increasing methanol concentrations. In the presence of the third group, hydrolysis was 40 to 50% inhibited for all the concentrations tested (0.2–5 M).  相似文献   

14.
Some properties of rat brain phenol sulphotransferase were investigated in in vitro at pH7.4. The enzyme was purified 10-fold by chromatography on DEAE-Sephadex -50. It can be assayed with 4-hydroxy-3-methoxyphenylethylene glycol or 4-methylumbelliferone as the sulphate acceptor. The partially purified enzyme is stable for at least 1 week when stored at 4 degrees C. It is, however, additionally activated (10--20%) and stabilized by 1 mM-dithiothreitol. The activity of the enzyme does not depend on the addition of exogenous Mg2+. The pH optima for the sulphation of 4-hydroxy-3-methoxyphenylethylene glycol and 4-methylumbelliferone are 7.8 and 7.4 respectively. Substrate inhibition by the sulphate acceptor is apparent at concentrations over 0.05mM. Initial-velocity studies in the absence and presence of product and dead-end inhibitors suggested that the mechanism of the rat brain sulphotransferase reaction is sequential ordered Bi Bi with a dead-end complex of enzyme with adenosine 3',5'-biphosphate and sulphate acceptor. The sulphate donor adenosine 3'-phosphate 5'-sulphatophosphate is the first substrate that adds to the enzyme, and the sulphate acceptor is the second substrate. The dissociation constant for the complex of enzyme with sulphate donor is 21 micron. The sulphated substrate is the first product and adenosine 3',5'-biphosphate is the second product that leaves the enzyme.  相似文献   

15.
The protein tyrosine phosphatase (PTP)-like phytase, PhyAsr, from Selenomonas ruminantium is a novel member of the PTP superfamily, and the only described member that hydrolyzes myo-inositol-1,2,3,4,5,6-hexakisphosphate. In addition to the unique substrate specificity of PhyAsr, the phosphate-binding loop (P-loop) has been reported to undergo a conformational change from an open (inactive) to a closed (active) conformation upon ligand binding at low ionic strength. At high ionic strengths, the P-loop was observed in the closed, active conformation in both the presence and absence of ligand. To test whether the P-loop movement can be induced by changes in ionic strength, we examined the effect that ionic strength has on the catalytic efficiency of PhyAsr, and determined the structure of the enzyme at several ionic strengths. The catalytic efficiency of PhyAsr is highly sensitive to ionic strength, with a seven-fold increase in k(cat)/K(m) and a ninefold decrease in K(m) when the ionic strength is increased from 100 to 500 mm. Surprisingly, the P-loop is observed in the catalytically competent conformation at all ionic strengths, despite the absence of a ligand. Here we provide structural evidence that the ionic strength dependence of PhyAsr and the conformational change in the P-loop are not linked. Furthermore, we demonstrate that the previously reported P-loop conformational change is a result of irreversible oxidation of the active site thiolate. Finally, we rationalize the observed P-loop conformational changes observed in all oxidized PTP structures.  相似文献   

16.
1. An enzyme system that catalyses the sulphation of p-nitrophenol, cholesterol, alpha-ecdysone, beta-sitosterol, dehydroepiandrosterone, oestrone and four other steroids of plant and insect origin was obtained from the soluble fraction of southern-armyworm gut tissues. 2. The enzyme system required ATP and inorganic sulphate, and activity was slightly enhanced in the presence of GSH. 3. The properties of this enzyme system with respect to pH, temperature, substrate and protein concentrations and various cofactors and reagents were studied. At -23 degrees C the enzyme preparation could be stored for 2 weeks without drastic loss of activity. At the end of storage for 1 month the loss of activity was approx. 21%. 4. The possible involvement of this enzyme system in insect endocrine control is discussed.  相似文献   

17.
An affinity column consisting of the specific peptide inhibitor of papain, Gly-Gly (O-benzyl)Tyr-Arg, attached to Sepharose was found to bind the active thiol proteinase papaya peptidase A specifically, but only at an ionic strength significantly higher than the one at which papain is bound. When a mixture of active papaya peptidase A and its irreversibly oxidized contaminant was applied to the column, the active enzyme was bound whereas the inactive material was not. The bound enzyme was released by deionized water and found to contain 1 mol of SH group/mol of protein. The different conditions required for the binding of the two enzymes to the immobilized peptide was shown to reflect different ionic-strength-dependences of the affinity of the two enzymes for the peptide in solution. Whereas the affinity of papain for the inhibitor appears to be insensitive to ionic strength over the range studied, that of papaya peptidase A is ionic-strength-dependent and always lower than that of papain. A rate assay is devised for papaya peptidase A with N-benzyloxycarbonylglycine p-nitrophenyl ester as the substrate at pH 5.5. After calibration against an active-site titration the assay yields the thiol-group concentration without interference from inactive contaminants. For the papaya peptidase A-catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester at pH 5.5 kcat. was found to be 16.7s-1, which is about 3 times the value found for the same reaction catalysed by papain.  相似文献   

18.
Thermus sp. strain Rt41A produces an extracellular thermostable alkaline proteinase. The enzyme has a high isoelectric point (10.25-10.5) which can be exploited in purification by using cation-exchange chromatography. The proteinase was purified to homogeneity and has a molecular mass of 32.5 kDa by SDS/PAGE. It is a glycoprotein, containing 0.7% carbohydrate as glucose equivalents, and has four half-cystine residues present as two disulphide bonds. Maximum proteolytic activity was observed at pH 8.0 against azocasein and greater than 75% of this activity was retained in the pH range 7.0-10.0. Substrate inhibition was observed with casein and azocasein. The enzyme was stable in the pH range 5.0-10.0 and maximum activity, in a 10-min assay, was observed at 90 degrees C with 5 mM CaCl2 present. No loss of activity was observed after 24 h at 70 degrees C and the half-lives at 80 degrees C and 90 degrees C were 13.5 h and 20 min, respectively. Removal of Ca2+ reduced the temperature for maximum proteolytic activity against azocasein to 60 degrees C and the half-life at 70 degrees C was 2.85 min. The enzyme was stable at low and high ionic strength and in the presence of denaturing reagents and organic solvents. Rt41A proteinase cleaved a number of synthetic amino acid p-nitrophenol esters, the kinetic data indicating that small aliphatic or aromatic amino acids were the preferred residue at the P1 position. The kinetic data for the hydrolysis of a number of peptide p-nitroanilide substrates are also reported. Primary cleavage of the oxidized insulin B chain occurred at sites where the P1' amino acid was aromatic. Minor cleavage sites (24 h incubation) were for amino acids with aliphatic side chains at the P1' position. The esterase and insulin cleavage data indicate the specificity is similar for both the P1 and P1' sites.  相似文献   

19.
Abstract— Kinetic parameters of the sulphotransferase reaction in rat brain were investigated in vitro at pH 7.4. Evidence is presented that the enzyme phenol sulphotransferase (EC 2.8.2.1) can be assayed with 4-methylumbelliferone or 3-methoxy-4-hydroxyphenylethyleneglycol as the substrate. Both assays give identical Vmax values, whereas Km values are 0.026 mm and 0.039 mm , respectively. Normetanephrine, metanephrine and the catecholamines adrenaline and dopamine, having a positive charge on the side chain at pH 7.4, do not inhibit 4-methylumbelliferone and 3-methoxy-4-hydroxyphenylethy-leneglycol sulphotransferase at this pH. Their deaminated metabolites 3,4-dihydroxyphenylethyleneglycol, 3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-methoxy-4-hydroxyphenylethylene glycol, 3-methoxy-4-hydroxyphenethanol and 3-methoxy-4-hydroxyphenylacetic acid inhibit both the enzyme activities. The type of inhibition is noncompetitive with the exception of 3-methoxy-4-hydroxy-phenylethyleneglycol, which is a competitive inhibitor of 4-methylumbelliferone sulphation. 3-Methoxy-4-hydroxy-mandelic acid does not inhibit the enzyme activities. It is concluded that the catecholamines themselves are not sulphated by rat brain in vitro at pH 7.4.  相似文献   

20.
Low-purity preparations from Escherichia intermedia A-21 and Citrobacter freundii 62 cells producing tyrosine phenol-lyase [l-tyrosine phenol-lyase (deaminating), EC 4.1.99.2] catalyse the decomposition of both threonine enantiomers to α-ketobutyric acid. Reactions with l-threonine and d-threonine are effected by two independent enzymes different from tyrosine phenol-lyase. The enzyme which acts on l-threonine has properties characteristic of biosynthetic threonine dehydratase [l-threonine hydro-lyase (deaminating), EC 4.2.1.16]. l-Isoleucine and dl-allothreonine are inhibitors of this enzyme, permitting a selective inhibition of biosynthetic threonine dehydratase and use of the preparations to act selectively on d-threonine in the racemate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号