首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway   总被引:7,自引:0,他引:7  
  相似文献   

5.
Recent genetic and molecular studies in Arabidopsis and Antirrhinum suggest that mechanisms controlling floral development are well conserved among dicotyledonous species. To assess whether similar mechanisms also operate in more distantly related monocotyledonous species, we have begun to clone homologs of Arabidopsis floral genes from maize. Here we report the characterization of two genes, designated ZAG1 and ZAG2 (for Zea AG), that were cloned from a maize inflorescence cDNA library by low stringency hybridization with the AGAMOUS (AG) cDNA from Arabidopsis. ZAG1 encodes a putative polypeptide of 286 amino acids having 61% identity with the AGAMOUS (AG) protein. Through a stretch of 56 amino acids, constituting the MADS domain, the two proteins are identical except for two conservative amino acid substitutions. The ZAG2 protein is less similar to AG, with 49% identity overall and substantially less similarity than ZAG1 outside the well-conserved MADS domain. Like AG, ZAG1 RNA accumulates early in stamen and carpel primordia. In contrast, ZAG2 expression begins later and is restricted to developing carpels. Hybridization to genomic DNA with the full-length ZAG1 cDNA under moderately stringent conditions indicated the presence of a large family of related genes. Mapping data using maize recombinant inbreds placed ZAG1 and ZAG2 near two loci that are known to affect maize flower development, Polytypic ear (Pt) and Tassel seed4 (Ts4), respectively. The ZAG1 protein from in vitro translations binds to a consensus target site that is recognized by the AG protein. These data suggest that maize contains a homolog of the Arabidopsis floral identity gene AG and that this gene is conserved in sequence and function.  相似文献   

6.
D Weigel  E Seifert  D Reuter    H Jckle 《The EMBO journal》1990,9(4):1199-1207
The region-specific homeotic gene fork head (fkh) is expressed and required in a variety of tissues of the developing Drosophila embryo. In order to identify the cis regulatory elements directing the complex spatio-temporal expression pattern of fkh, we have studied the subpatterns directed by defined fragments of fkh genomic DNA. These experiments enabled us to distinguish separate regulatory elements specific for the different expression domains of fkh. In addition, our analysis revealed several unexpected features such as the redundancy of regulatory elements and the overlap of regulatory elements with the transcribed regions of other genes. Moreover, the separation of normally contiguous elements effecting expression in the posterior terminal fkh domain appears to lead to novel expression domains which do not correspond to known developmental units in the embryo.  相似文献   

7.
Mutations in the AGAMOUS (AG) gene cause transformations in two adjacent whorls of the Arabidopsis flower. Petals develop in the third floral whorl rather than the normal stamens, and the cells that would normally develop into the fourth whorl gynoecium behave as if they constituted an ag flower primordium. Early in flower development, AG RNA is evenly distributed throughout third and fourth whorl organ primordia but is not present in the organ primordia of whorls one and two. In contrast to the early expression pattern, later in flower development, AG RNA is restricted to specific cell types within the stamens and carpels as cellular differentiation occurs in those organs. Ectopic AG expression patterns in flowers mutant for the floral homeotic gene APETELA2 (AP2), which regulates early AG expression, suggest that the late AG expression is not directly dependent on AP2 activity.  相似文献   

8.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Several homeotic genes controlling floral development have been isolated in both Antirrhinum and Arabidopsis. Based on the similarities in sequence and in the phenotypes elicited by mutations in some of these genes, it has been proposed that the regulatory hierarchy controlling floral development is comparable in these two species. We have performed a direct experimental test of this hypothesis by introducing a chimeric Antirrhinum Deficiens (DefA)/Arabidopsis APETALA3 (AP3) gene, under the control of the Arabidopsis AP3 promoter, into Arabidopsis. We demonstrated that this transgene is sufficient to partially complement severe mutations at the AP3 locus. In combination with a weak ap3 mutation, this transgene is capable of completely rescuing the mutant phenotype to a fully functional wild-type flower. These observations indicate that despite differences in DNA sequence and expression, DefA coding sequences can compensate for the loss of AP3 gene function. We discuss the implications of these results for the evolution of homeotic gene function in flowering plants.  相似文献   

16.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:17,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

17.
18.
The ABC model of flower development, established through studies in eudicot model species, proposes that petal and stamen identity are under the control of B-class genes. Analysis of B- and C-class genes in the grass species rice and maize suggests that the C- and B-class functions are conserved between monocots and eudicots, with B-class genes controlling stamen and lodicule development. We have undertaken a further analysis of the maize B-class genes Silky1, the putative AP3 ortholog, and Zmm16, a putative PI ortholog, in order to compare their function with the Arabidopsis B-class genes. Our results show that maize B-class proteins interact in vitro to bind DNA as an obligate heterodimer, as do Arabidopsis B-class proteins. The maize proteins also interact with the appropriate Arabidopsis B-class partner proteins to bind DNA. Furthermore, we show that maize B-class genes are capable of rescuing the corresponding Arabidopsis B-class mutant phenotypes. This demonstrates B-class activity of the maize gene Zmm16, and provides compelling evidence that B-class gene function is conserved between monocots and eudicots.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号