首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nomenclature and synthesis of acidic and basic ribosomal proteins of plant cell cultures are described, with special regard to ribosome biosynthesis under control and heat-shock conditions. Assembly and processing of preribosomes in the nucleolus require a defined set of ribosomal proteins binding to the nascent pre-rRNA chain. Others are added later on the maturation pathway, mostly in the cytoplasm. Although, under appropriate heat-shock conditions, formation of mature ribosomes is completely blocked, most of the typical ribosomal proteins are still detected in the nuclear fraction. They are constituents of heat-shock preribosomes, which can be processed to normal cytoplasmic ribosomes only if the cells are allowed to recover at 25°C shortly after the labeling period at 40°C. However, if hyperthermic conditions are maintained, the labeled pre-rRNP material is evidently partly broken down. It forms the growing amount of RNP granules (ribosomal wastage) characteristic of the dispersed nucleolus of heat-shocked cells. In addition to the ‘nucleolar’ ribosomal proteins, a few newly formed ribosomal proteins can also be detected in cytoplasmic ribosomes under heat-shock conditions. Most of them belong to the group of exchange proteins whose labeling continues even if pre-rRNA synthesis is blocked by actinomycin D.  相似文献   

3.
Details of the mechanism for ribosome synthesis have been incorporated in the single-cell Escherichia coli model, which enable us to predict the amount of protein synthesizing machinery under different environmental conditions. The predictions agree quite well with available experimental data. The model predicts that ribosomal protein limitations are important when the translational apparatus is in high demand. Ribosomal RNA synthesis is induced by an increase in translational activity, which, in turn, stimulates ribosomal protein synthesis. However, as the demand increases still more, the ribosomal protein mRNA must compete with the plasmid mRNA for ribosomes, and the efficiency of translation of ribosomal proteins is reduced. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
《The Journal of cell biology》1988,106(4):1105-1116
Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.  相似文献   

5.
Synthesis of about 30 acidic and 18 basic heat-shock proteins (hsps) is induced in suspension cultures of tomato (Lycopersicon peruvianum) if subjected to supraoptimal temperature conditions (35-40 degrees C). A characteristic aspect of the plant heat-shock response is the formation of cytoplasmic granular aggregates, heat-shock granules, containing distinct heat-shock proteins as major structural components and, in addition, several hitherto undetected minor acidic and basic heat-shock proteins. Structural binding of heat-shock proteins, i.e. assembly of heat-shock granules, is dependent on the persistance of supraoptimal temperature conditions. Despite the ongoing synthesis also at 25 degrees C, e.g. in pulse heat-shocked cultures, these proteins are accumulated exclusively in soluble form. Individual heat-shock proteins are characterized by their kinetics of synthesis and are classified by their compartmentation behaviour into class A proteins (exclusively found in soluble form, e.g. hsps 95 and 80), class B proteins (5-10% bound to heat-shock granules, e.g. hsps 70, 68), class C proteins (30-80% bound to heat-shock granules, e.g. hsps 21, 17, 15) and class D proteins, which are minor heat-shock proteins only detected in structure-bound form. Major representatives are modified proteins, i.e. hsps 95, 80, 70 and 68 are phosphorylated and hsps 80, 74, 70 and 17 are methylated proteins (numbers 70, 80 etc. refer to 10(-3) Mr). Under heat-shock conditions synthesis of the proteins detected in control cells (25 degrees C proteins) exhibits two patterns. There are proteins with continued and proteins with discontinued synthesis. Synthesis of most of the latter proteins is resumed very rapidly after shift-down to 25 degrees C, even in the presence of actinomycin D. We conclude that reversible segregation of distinct mRNA species from the translation apparatus contributes to the heat-shock-specific pattern of protein synthesis in plants also.  相似文献   

6.
The synthesis of ribosomes in HeLa cells was studied during recovery from a 20-hour deprivation for valine. The rates of incorporation of labeled precursors into ribosomal pre-RNA, processed rRNA, total cellular proteins, and proteins of the 60S ribosomal subunit returned to normal or nearly normal levels immediately after restoration of valine to the medium. Specific proteins of the 60S ribosomal subunit, whose apparent net synthesis is reduced more than that of the other proteins of the 60S ribosomal subunit during valine deprivation, were no longer undersynthesized after valine was restored. This rapid recovery suggests that the apparent decrease in the net rate of synthesis of these ribosomal proteins during valine deprivation is effected at the translational or post-translational level. No evidence of significant synchrony in any particular stage of the cell cycle was observed after a 20-hr valine deprivation. Key words: 60S ribosomal subunit; HeLa, cells; valine deprivation.  相似文献   

7.
8.
9.
10.
The effect of cellular capsule elimination in Saccharomyces cerevisiae yeasts (protoplast formation) on the heat-shock protein synthesis and the synthesis of the proteins in protoplasts were studied. The methods of mono- and dimeric electrophoresis have demonstrated that (1) about 18 heat-shock proteins with the molecular masses 26-98 Kd are synthesized in cells at 41 degrees C; (2) protoplast formation per se does not induce the synthesis of heat-shock proteins, but the induction of these proteins in protoplasts at 41 degrees C is similar to the one in intact cells. The protoplast formation induces the synthesis of specific proteins different from heat-shock proteins and the synthesis is inhibited by the heat-shock. The heat-shock induces modification of 88 and 86 Kd heat-shock proteins. It inhibits the synthesis of a number of peptides (15-50 Kd) in cells and protoplasts.  相似文献   

11.
During Xenopus development, the synthesis of ribosomal proteins is regulated at the translational level. To identify the region of the ribosomal protein mRNAs responsible for their typical translational behavior, we constructed a fused gene in which the upstream sequences (promoter) and the 5' untranslated sequence (first exon) of the gene coding for Xenopus ribosomal protein S19 were joined to the coding portion of the procaryotic chloramphenicol acetyltransferase (CAT) gene deleted of its own 5' untranslated region. This fused gene was introduced in vivo by microinjection into Xenopus fertilized eggs, and its activity was monitored during embryogenesis. By analyzing the pattern of appearance of CAT activity and the distribution of the S19-CAT mRNA between polysomes and messenger ribonucleoproteins, it was concluded that the 35-nucleotide-long 5' untranslated region of the S19 mRNA is able to confer to the fused S19-CAT mRNA the translational behavior typical of ribosomal proteins during Xenopus embryo development.  相似文献   

12.
Lipoperoxidative damage caused by exposure of isolated hepatocytes or cultivated hepatoma cells to ADP-iron or to 4-hydroxynonenal induces the synthesis of some proteins which are different under these two conditions but are always a subset of the proteins induced in each type of cells upon heat-shock (heat-shock proteins). For at least one of these proteins (hsp 31), induced by 4-hydroxynonenal, the increase is dose-dependent and the effect of heat and the chemical seems to be additive. Lipoperoxidation may be implicated in the induction of some of the heat shock proteins, but reproduces only incompletely the response of protein synthesis typical of heat-shock conditions.  相似文献   

13.
14.
Interferons (IFNs) are proteins which have antiviral and antiproliferative properties and are known to affect various immunological processes. Some of these activities have been shown to be potentiated by increased temperatures. When cells are subjected to a rise in temperature, the synthesis of the heat-shock proteins (HSPs) is 'switched on.' In this report we demonstrate a synergistic effect of IFN and stress (arsenite treatment or elevated temperature) on the heat-shock response. On the one hand, IFN pretreatment enhances the accumulation of HSP mRNAs and the corresponding protein synthesis after a mild stress and, on the other hand, it amplifies the decrease of the total protein synthesis after a severe stress. Thus in IFN pretreated cells the range of temperatures leading to the heat-shock response is shifted towards common physiological values.  相似文献   

15.
16.
17.
Summary Ribosomal protein synthesis is regulated by controlling the fraction of mRNA associated with polysomes. It is known that this value changes in different developmental stages during Xenopus embryogenesis or, more generally, with changing cell growth conditions. We present here an analysis of the proportion of mRNA loaded on polysomes, carried out with probes for five different ribosomal proteins on several batches of Xenopus embryos obtained from different individuals. The results obtained indicate the existence of probe-dependent and individual differences, which reflect genetic variations in the cis- and trans-acting regulatory elements responsible for translational regulation. The fraction of ribosomal protein mRNA loaded onto polysomes can be used as an index of an individual's capacity for ribosome production.  相似文献   

18.
We studied the influence of water-deficit stress on the process of formation of different polysomal populations, their abundance and stability in embryonic tissue during triticale caryopsis germination. Osmotic stress retarded the ability of seeds to germinate and decreased the content of the total ribosomal fraction in embryos. In control samples, the fraction of free polysomes was the most abundant and this population of polysomes decreased sharply in osmotic stress conditions. Water-deficit stress applied during germination profoundly changed the proportions between different polysome populations in the total ribosomal fraction of embryonic tissue. The predominant population in these conditions was the cytoskeleton-bound fraction. This may indicate an important role for cytoskeleton-bound polysomes in the synthesis of stress-induced proteins. We hypothesize that there must be an active mechanism of translational control that permits specific proteins to be synthesized despite a reduction in total protein synthesis.  相似文献   

19.
The objectives of this study were to determine the ability of trophectoderm from preimplantation ovine embryos to synthesize hsp70 in response to heat shock and to identify conditions which induce translational thermotolerance in this tissue. Day 15 embryos were collected, and proteins synthesized in 1.5-mm sections of trophectoderm were radioactively labeled with (35)S-methionine. One-dimensional SDS-PAGE gels, two-dimensional gel electrophoresis and Western blots were utilized to characterize the heat shock response and to examine the induction of translational thermotolerance. Increased synthesis of the 70 kDa heat shock proteins and a protein with an approximate molecular weight of 15 to 20 kDa was observed with heat shock (> or = 42 degrees C). Total protein synthesis decreased (P < 0.05) with increased intensity of heat shock. At 45 degrees C, protein synthesis was suppressed with little or no synthesis of all proteins including hsp70. Recovery of protein synthesis following a severe heat shock (45 degrees C for 20 min) occurred faster (P < 0.05) in trophectoderm pretreated with a mild heat shock (42 degrees C for 30 min) than trophectoderm not pretreated with mild heat. In summary, trophoblastic tissue obtained from ovine embryos exhibit the characteristic "heatshock" response similar to that described for other mammalian systems. In addition, a sublethal heat shock induced the ability of the tissue to resume protein synthesis following severe heat stress. Since maintaining protein synthesis is crucial to embryonic survival, manipulation of the heat-shock response may provide a method to enhance embryonic survival.  相似文献   

20.
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号