首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

2.
At the onset of dorsiflexion disynaptic reciprocal inhibition (DRI) of soleus motoneurons is increased to prevent activation of the antagonistic plantar flexors. This is caused by descending facilitation of transmission in the DRI pathway. Because the risk of eliciting stretch reflexes in the ankle plantar flexors at the onset of dorsiflexion is larger the quicker the movement, it was hypothesized that DRI may be increased when subjects are trained to perform dorsiflexion movements as quickly as possible For this purpose, 14 healthy human subjects participated in explosive strength training of the ankle dorsiflexor muscles 3 times a week for 4 wk. Test sessions were conducted before, shortly after, and 2 wk after the training period. The rate of torque development measured at 30, 50, 100, and 200 ms after onset of voluntary explosive isometric dorsiflexion increased by 24-33% (P < 0.05). DRI was measured as the depression of the soleus H reflex following conditioning stimulation of the peroneal nerve (1.1 x motor threshold) at an interval of 2-3 ms. At the onset of dorsiflexion the amount of DRI measured relative to DRI at rest increased significantly from 6% before the training to 22% after the training (P < 0.05). We speculate that DRI at the onset of movement may be increased in healthy subjects following explosive strength training to ensure efficient suppression of the antagonist muscles as the dorsiflexion movement becomes faster.  相似文献   

3.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

4.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

5.
Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.  相似文献   

6.
We hypothesize that training results in a faster and greater repletion of glycogen in skeletal muscles of normal and diabetic rats. Normal male Sprague-Dawley rats (100-140 g) were divided into two groups--one to train by treadmill running for 10 wk and the other to remain sedentary. Forty-eight hours after the last training session the rats of both groups were exercised to exhaustion. One subgroup of each was fed oral glucose (3 g/kg) at exhaustion and killed 60 min later. The other was killed at exhaustion. The glycogen concentration of soleus, plantaris, and red and white gastrocnemius was determined in all rats. The trained group had higher glycogen levels after glucose feeding in all muscles (P less than 0.002) and repleted their muscle glycogen more rapidly (P less than 0.05). However, in diabetic rats (45 mg streptozotocin/kg body wt) the trained and sedentary rats have similar glycogen levels and glycogen repletion rates in all muscles. Compared with the normal trained rats, the diabetic trained rats had slower glycogen repletion rates (P less than 0.05).  相似文献   

7.
The efficacy of anabolic steroid treatment [0.3 or 0.9 mg nandrolone decanoate (Deca-Durabolin) per day] was examined in the context of sparing rodent fast-twitch plantaris and slow-twitch soleus muscle weight, sparing subcellular protein, and altering isomyosin expression in response to hindlimb suspension. Female rats were assigned to four groups (7 rats/group for 6 wk): 1) normal control (NC), 2) normal steroid (NS), 3) normal suspension (N-SUS), and 4) suspension steroid (SUS-S). Compared with control values for the plantaris and soleus muscles, suspension induced 1) smaller body and muscle weight (P less than 0.05), 2) losses in myofibril content (mg/muscle, P less than 0.05), and 3) shifts in the relative expression (expressed as %of total isomyosin) of isomyosins which favored lesser slow myosin and greater fast myosin isotypes (P less than 0.05). Steroid treatment of suspended animals (SUS-S vs. N-SUS) partially spared body and muscle weight (P less than 0.05) and spared plantaris but not soleus myofibril content (mg/muscle, P less than 0.05). However, steroid treatment did not modify the isomyosin pattern induced by suspension. In normal rats (NS vs. NC), steroid treatment enhanced body and plantaris muscle weight but not soleus weight (P less than 0.05) and did not alter isomyosin expression in either muscle type. Collectively these data suggest that in young female rats anabolic steroids 1) enhance the body weight and the weight of a fast-twitch ankle extensor in normal rats, 2) ameliorate the loss in body weight, fast-twitch muscle weight and protein content and slow-twitch muscle weight associated with hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Contractile properties of old rat muscles: effect of increased use   总被引:1,自引:0,他引:1  
To examine how different kinds of activity affect the composition and contractile properties of aging skeletal muscle, old male rats were strength and swim trained. The mass of weights lifted during the strength training increased by 85 +/- 9% (P less than 0.05), which was accompanied by an increase by 32 +/- 5% (P less than 0.05) of the estimated force developed. The wet muscle weight of the soleus and the plantaris decreased significantly with age. The phenomenon was counteracted but not neutralized by the strength training. Twitch and tetanic tension also decreased significantly with age in both the soleus and plantaris muscle. This was avoided by the strength training. This training also significantly decreased time to peak tension and half-relaxation time of both muscles. The swim training increased the heart-to-body weight ratio by 21 +/- 5% (P less than 0.05) and the endurance of the soleus muscle. Time to peak tension and triosephosphate dehydrogenase activity of the plantaris muscle were strongly correlated (P less than 0.001) with myosin adenosinetriphosphatase activity. The results show that the composition and contractile properties of old skeletal muscle are considerably affected by strength training repeated during a substantial period of old age, whereas swim training only affects the endurance of the skeletal muscle.  相似文献   

9.
1. Female Wistar rats were randomly assigned to control (C) or exercising (T) groups and subsequently portioned into 1, 3, 5 and 10 day T and C groups. The T groups completed a progressive endurance running program. Biochemical indices of adaptation were measured in cardiac muscle and in plantaris and soleus muscles of C and T animals after their last exercise bout. 2. In cardiac muscle, myofibrillar ATPase activity was significantly elevated in the 3T (0.241 +/- 0.031) and 5T (0.242 +/- 0.013) groups (P less than or equal to 0.05) compared to their respective controls (3C = 0.187 +/- 0.015 and 5C = 0.190 +/- 0.007). 3. After 10 days of training cardiac myofibrillar ATPase activity was elevated by 17% but this was not significant (P greater than or equal to 0.05). 4. No changes in myofibrillar ATPase activity were seen in skeletal muscle (P greater than or equal to 0.05), however, hexokinase activity progressively increased and was significantly elevated in the 3T, 5T and 10T soleus and plantaris muscles of rats over controls (P less than or equal to 0.05). 5. Minimal nonsignificant changes were noted in the hexokinase activity of the hearts of all T groups (P greater than or equal to 0.05). 6. These results indicate that metabolic adaptation of the heart and skeletal muscles takes place after as little as three training sessions. 7. Although the adaptation of the skeletal muscles continually progresses, the adaptation of the heart appears to be transitory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
There is evidence that immobilization causes a decrease in total collagen synthesis in skeletal muscle within a few days. In this study, early immobilization effects on the expression of prolyl 4-hydroxylase (PH) and the main fibrillar collagens at mRNA and protein levels were investigated in rat skeletal muscle. The right hindlimb was immobilized in full plantar flexion for 1, 3, and 7 days. Steady-state mRNAs for alpha- and beta-subunits of PH and type I and III procollagen, PH activity, and collagen content were measured in gastrocnemius and plantaris muscles. Type I and III procollagen mRNAs were also measured in soleus and tibialis anterior muscles. The mRNA level for the PH alpha-subunit decreased by 49 and 55% (P < 0.01) in gastrocnemius muscle and by 41 and 39% (P < 0.05) in plantaris muscle after immobilization for 1 and 3 days, respectively. PH activity was decreased (P < 0.05-0.01) in both muscles at days 3 and 7. The mRNA levels for type I and III procollagen were decreased by 26-56% (P < 0.05-0.001) in soleus, tibialis anterior, and plantaris muscles at day 3. The present results thus suggest that pretranslational downregulation plays a key role in fibrillar collagen synthesis in the early phase of immobilization-induced muscle atrophy.  相似文献   

11.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Muscle bloodflow and the rate of glucose uptake and phosphorylation were measured in vivo in rats 7 days after unilateral femoral artery ligation and section. Bloodflow was determined by using radiolabelled microspheres. At rest, bloodflow to the gastrocnemius, plantaris and soleus muscles of the ligated limb was similar to their respective mean contralateral control values; however, bilateral sciatic nerve stimulation at 1 Hz caused a less pronounced hyperaemic response in the muscles of the ligated limb, being 59, 63 and 49% of their mean control values in the gastrocnemius, plantaris and soleus muscles respectively. The rate of glucose utilization was determined by using the 2-deoxy[3H]glucose method [Ferré, Leturque, Burnol, Penicaud & Girard (1985) Biochem. J. 228, 103-110]. At rest, the rate of glucose uptake and phosphorylation was statistically significantly increased in the gastrocnemius and soleus muscles of the ligated limb, being 126 and 140% of the mean control values respectively. Bilateral sciatic nerve stimulation at 1 Hz caused a 3-5-fold increase in the rate of glucose utilization by the ligated and contralateral control limbs; furthermore, the rate of glucose utilization was significantly increased in the muscles of the ligated limb, being 140, 129 and 207% of their mean control values respectively. For the range of bloodflow to normally perfused skeletal muscle at rest or during isometric contraction determined in the present study, a linear correlation between the rate of glucose utilization and bloodflow can be demonstrated. Applying similar methods of regression analysis to glucose utilization and bloodflow to muscles of the ligated limb reveals a similar linear correlation. However, the rate of glucose utilization at a given bloodflow is increased in muscles of the ligated limb, indicating an adaptation of skeletal muscle to hypoperfusion.  相似文献   

14.
Blood flow and glycogen use in hypertrophied rat muscles during exercise   总被引:1,自引:0,他引:1  
Previous findings suggest that skeletal muscle that has enlarged as a result of removal of synergistic muscles has a similar metabolic capacity and improved resistance to fatigue compared with normal muscle. The purpose of the present study was to follow blood flow and glycogen loss patterns in hypertrophied rat plantaris plantaris and soleus muscles during treadmill exercise to provide information on the adequacy of perfusion of the muscles during in vivo exercise. Thirty days following surgical removal of gastrocnemius muscle, blood flows (determined with radiolabeled microspheres) and glycogen concentrations were determined in all of the ankle extensor muscles of experimental and sham-operated control rats during preexercise and after 5-6 min of treadmill exercise at 15 m/min. There were no differences (P greater than 0.05) in blood flows per unit mass or glycogen concentrations between control and hypertrophied plantaris or soleus muscles at either time, although both muscles were larger (P less than 0.05) in the experimental group (plantaris: 95%; soleus: 40%). None of the other secondary ankle extensor muscles (tibialis posterior, flexor digitorum longus or flexor hallicus longus) hypertrophied in response to removal of gastrocnemius. These results provide indirect evidence that O2 delivery in the enlarged muscles is not compromised during low-intensity treadmill exercise due to limited perfusion.  相似文献   

15.
The purpose of this study was to determine whether skeletal muscle mass, myofibrillar adenosinetriphosphatase activity, and the expression of myosin heavy (MHC) and light chain subunits are differentially affected in juvenile (4 wk) and young adult (12 wk) rats by a hypertrophic growth stimulus. Hypertrophy of the plantaris or soleus was studied 4 wk after ablation of either two [gastrocnemius (GTN) and soleus or plantaris] or one (GTN) synergistic muscle(s). There was no difference in the relative magnitude of hypertrophy because of age. Plantaris myofibrillar adenosinetriphosphatase activity was decreased 21 and 12% in juvenile and adult rats, respectively, as a result of ablation of both the GTN and soleus. Slow myosin light chain isoforms (1s and 2s) were expressed to a greater extent in hypertrophied plantaris muscles of both ages, but the increase in 1s was greater in juvenile rats. The relative expression of slow beta-MHC in hypertrophied plantaris muscles increased by 470 and 350%, whereas MHC IIb decreased by 70 and 33% in juvenile and adult rats, respectively. The relative expression of MHC IIa increased (56%) in the plantaris after ablation in juvenile rats only. These shifts in myosin subunit expression and the increases in mass were generally about one-half the magnitude when only the GTN was removed. There were no detectable myosin shifts in hypertrophied soleus muscles. Although the extent of muscle hypertrophy is similar, the shifts in myosin subunits were greater in juvenile than in young adult rats.  相似文献   

16.
  • 1.1. The effect of functional overload produced by tenotomy of synergistic gastrocnemius muscle on the expression of myosin heavy chain (MHC) isoforms in the plantaris and soleus muscles of the rat was studied using gradient sodium dodecyl sulfate-acrylamide gel electrophoresis.
  • 2.2. Five weeks tenotomy, the plantaris and soleus muscle weights induced by tenotomy of the gastrocnemius muscle were 44.3% (P < 0.005) and 37.4% (P < 0.005), respectively, heavier than the contralateral control muscles.
  • 3.3. Although four types of MHC isoforms were observed in both control and experimental plantaris, the percentage of MHC isoforms in the control and experimental muscles differed; the hypertrophied plantaris muscle contained more HCI (P < 0.05), HCIIa and HCIId (P < 0.05) and less HCIIb (P < 0.05) than the control muscle.
  • 4.4. The control soleus muscle contained two MHC isofonns, HCI and HCIIa. However, there was only a single HCI isoform in the hypertrophied soleus muscle.
  • 5.5. These results indicate that overloading a skeletal muscle by removing its synergists produces not only the muscle hypertrophy but also the changes in the expression of MHC isofonns.
  相似文献   

17.
Adaptations in coactivation after isometric resistance training.   总被引:5,自引:0,他引:5  
Twenty sedentary male university students were randomly assigned to an experimental or a control group. The experimental group trained the knee extensors of one leg by producing 30 isometric extension maximal voluntary contractions (MVC) per day, three times per week for 8 wk. After 8 wk of training, extensor MVC in the trained leg increased 32.8% (P less than 0.05), but there was no change in vastus lateralis maximal integrated electromyographic activity (IEMGmax). The most important finding was that the degree of hamstring coactivation during extension MVC decreased by approximately 20% (P less than 0.05) after the 1st wk of training. Less pronounced adaptations occurred in the untrained leg: extension MVC force increased 16.2% (P less than 0.05), hamstring coactivity decreased 13% (P less than 0.05) after 2 wk of training, and vastus lateralis IEMGmax was unchanged. The same measures in legs of the control group were not changed during the study. There were no changes in flexion MVC, biceps femoris IEMGmax, or the degree of quadriceps coactivity during flexion MVC in either leg of the control or experimental group. A reduction in hamstring coactivity in the trained and untrained legs indicates that these muscles provide less opposing force to the contracting quadriceps. We conclude that this small but significant decrease in hamstring coactivation that occurs during the early stages of training is a nonhypertrophic adaptation of the neuromuscular system in response to static resistance training of this type.  相似文献   

18.
The response of hypertrophied soleus and plantaris muscle of rats to endurance training was studied. Hypertrophy was produced by bilateral extirpation of the gastrocnemius muscle. A 13-wk training program of treadmill running initiated 30 days after removal of the gastrocnemius muscle accentuated (P less than 0.01) the hypertrophy. Succinate dehydrogenase activities of the enlarged muscles of sedentary rats were similar to those of normal animals, as were the increases associated with training. Phosphorylase and hexokinase activities were unaltered as a result of the experimental perturbations. Rates of glycogen depletion during exercise were lower (P less than 0.01) in the liver and soleus and plantaris muscles of endurance-trained animals. No difference existed in the rate of glycogen depletion of normal and hypertrophied muscle within the sedentary or trained groups. These data demonstrate that extensively hypertrophied muscle responds to training and exercise in a manner similar to that of normal muscle.  相似文献   

19.
The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.  相似文献   

20.
Protein kinase C (PKC) may be involved in growth regulation. In the present study the relationship between body weight, and thereby age, and the activity of PKC in muscle as well as in rapidly growing overloaded muscle were investigated. PKC activity in music was linearly inversely correlated to rat weight in both soleus (r = -0.59, P less than 0.05) and in plantaris (r = -0.74, P less than 0.01) muscles. During compensatory hypertrophy. PKC activity per muscle was maximally increased compared with the contralateral control muscles after 4 days in both soleus (126%) and in plantaris (105%) but had returned to basal levels by the 9th day. The data are in agreement with a role for PKC in muscle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号