首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
植物核糖体失活蛋白及其应用进展   总被引:1,自引:0,他引:1  
植物核糖体失活蛋白(ribosome-inactivating proteins,RIPs)是一类作用于真核细胞rRNA,并破坏其核糖体结构,抑制蛋白质生物合成的毒蛋白,主要应用在农业和医学领域。在农业领域,主要应用在转基因植物中,增强其抗病毒、抗菌以及抗虫活性。在医学领域,主用应用于抗肿瘤、抗艾滋病病毒等研究中。对核糖体失活蛋白的一些性质和应用进展进行综述。  相似文献   

2.
Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.  相似文献   

3.
核糖体灭活蛋白在植物中的作用   总被引:6,自引:0,他引:6  
植物核糖体灭活蛋白 (ribosome -inactivatingproteins ,RIPs)能够破坏真核或原核细胞的核糖体大亚基RNA ,使核糖体失活而不能与蛋白质合成过程中的延伸因子相结合 ,从而导致蛋白质合成受到抑制。不同的核糖体对不同RIPs的敏感性不同 ,RIPs对自体或异体核糖体的作用也有很大区别。RIPs对病毒有很强的抑制作用 ,并且有些RIPs表现出对某些真菌和昆虫的抗性 ,因此认为核糖体灭活蛋白在植物的防御反应中扮演重要角色。另外 ,RIPs还可能参与了细胞代谢、细胞死亡等生理调控过程。  相似文献   

4.
核糖体失活蛋白是一类具有高度特异性rRNA N-糖苷酶活性的蛋白,它们能够使原核或真核细胞的核糖体失活因而具有细胞毒性.由于其独特的生物学性质,核糖体失活蛋白被认为在农业和医学中都有着巨大的应用潜力.我们之前的研究表明,黄瓜的基因组中共包含2个2类核糖体失活蛋白基因,分别命名为CumsaAB1和CumsaAB2.以蓖麻毒蛋白Ricin为代表,2类核糖体失活蛋白通常由2条二硫键连接的肽链组成:具有N-糖苷酶活性的A链与具有凝集素活性的B链.本文研究了黄瓜中核糖体失活蛋白的表达情况.亚细胞定位研究表明CumsaAB1经过蛋白分泌通路表达于细胞外,这与蛋白质序列分析显示的CumsaAB1包含一个信号肽而不含转膜区域相一致.对黄瓜的不同生长阶段的不同组织中的转录水平分析表明,CumsaAB1在大部分组织中以极低的水平表达,而CumsaAB2表达水平则明显更高,尤其在第一片真叶阶段和刚开花的植物中.最后,我们使用分子模拟对黄瓜中核糖体失活蛋白的结构及糖结合位点进行了分析.本研究对黄瓜中核糖体失活蛋白的亚细胞定位、表达水平和可能的蛋白质结构进行了研究,为其进一步的生物学功能研究提供了重要信息.  相似文献   

5.
Four different type 1 ribosome-inactivating proteins (RIPs) with RNA N-glycosidase activity were tested for their ability to attack the large rRNA of plant ribosomes derived from tobacco plants, as well as from the plant species from which the particular RIP had been isolated. Incubation of tobacco ribosomes with RIPs isolated from either Phytolacca americana L. (pokeweed), Dianthus barbatus L. (carnation), Spinacia oleracea L. (spinach) or Chenopodium amaranthicolor Coste and Reyn. (chenopodium) rendered the 25S rRNA sensitive to aniline-catalyzed hydrolysis, generating a single rRNA-fragment of about 350 nucleotides. The same fragment was generated when rRNAs from pokeweed, carnation, spinach or chenopodium ribosomes were aniline-treated without any deliberate treatment of the ribosomes with the respective RIP. This indicated that ribosomes from all RIP-producing plants were already inactivated by their own RIPs during preparation. These results demonstrate that plant ribosomes are generally susceptible to RIP attack, including modification by their own RIPs. Direct sequencing of the newly generated fragments revealed that a single N-glycosidic bond at an adenosine residue within the highly conserved sequence 5'-AGUACGAGAGGA-3' was cleaved by all of the RIPs investigated, a situation also found in animal, yeast and Escherichia coli ribosomes.  相似文献   

6.
Many plants contain proteins that are commonly designated as ribosome-inactivating proteins (RIPs). Based on the structure of the genes and the mature proteins a novel system is proposed to unambiguously classify all RIPs in type-1, type-2, and type-3 RIPs. In addition, the concept of one- and two-chain type-1 RIPs is introduced. After an overview of the occurrence, molecular structure, and amino acid sequences of RIPs, the formation of the mature proteins from the primary translation products of the corresponding mRNAs is elaborated in detail in a section dealing with the biosynthesis, posttranslational modifications, topogenesis, and subcellular location of the different types of RIPs. Details about the three-dimensional structure of type-1 RIPs and the A and B chains of type-2 RIPs are discussed in a separate section. Based on the data given in the previous sections, the phylogenic and molecular evolution of RIPs is critically assessed and a novel model is proposed for the molecular evolution of RIPs. Subsequently, the enzymatic activities of RIPs are critically discussed whereby special attention is given to some presumed novel activities, and a brief overview is given of the biological activities of the different types of RIPs on cells and whole organisms. By combining the data on the enzymatic activities and biological activities of RIPs, and the current knowledge of different plant physiological aspects of these proteins, the role of RIPs in plants is revisited. Thereby the attention is focussed on the role of RIPs in plant defense with the emphasis on protection against plant-eating organisms and viruses. Finally, there is a short discussion on the discovery of a novel class of enzymes called RALyases that use ribosomes damaged by RIPs as a substrate and may act cooperatively with RIPs. There is discussion regarding why the identification of this novel enzyme gives valuable clues to the origin and original function of RIPs and may be helpful to unravel the physiological role of modem RIPs.  相似文献   

7.
Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity agains...  相似文献   

8.
Ribosome-inactivating proteins up to date   总被引:21,自引:0,他引:21  
F Stirpe  L Barbieri 《FEBS letters》1986,195(1-2):1-8
Ribosome-inactivating proteins (RIPs) from plants inactivate eukaryotic ribosomes, as far as studied by rendering their 60 S subunit unable to bind elongation factor 2. These proteins seem widely distributed and possibly ubiquitous in plants. They are either type 1, those consisting of a single polypeptide chain, or type 2 (ricin and related toxins), those consisting of two chains, one of which is a galactose-binding lectin. The literature on RIPs from 1982 has been reviewed with respect to the chemical and biological properties of RIPs, their use for the preparation of immunotoxins and new perspectives.  相似文献   

9.
10.
核糖体失活蛋白是一类毒蛋白, 主要存在于植物当中, 在真菌和细菌中也有发现。其共同特点是具有N-糖苷酶活性, 能水解生物核糖体大亚基rRNA颈环结构上特定位点的腺嘌呤, 使核糖体失活, 从而抑制了蛋白质合成。本文对核糖体失活蛋白的主要性质、应用以及国内外有关这类蛋白的研究进展加以概述。  相似文献   

11.
A large number of type 1 ribosome-inactivating proteins (RIPs)from plants (families of Caryophyllaceae, Cucurbitaceae, Euphorbiaceae,Phytolaccaceae, and Poaceae) were examined for their requirementfor ATP and supernatant factors for full activity. A markedrequirement was observed with agrostin among Caryophyllaceae,gelonin among Euphorbiaceae, and with both barley RIP and tritin-Samong Poaceae. The distribution of cofactor requirement in Phytolaccaceaediscriminates leaf forms (cofactor-independent) from seed androot forms (cofactor-dependent). The results are discussed onthe basis of the present knowledge on the tissue localizationof RIPs and on the sensitivity of ribosomes to conspecific RIPs. Key words: Cofactors, ribosome-inactivating proteins, RNA-N-glycosidase, up-regulation  相似文献   

12.
Ribosome-inactivating proteins from plants: more than RNA N-glycosidases?   总被引:18,自引:0,他引:18  
Many plants contain proteins that are capable of inactivating ribosomes and accordingly are called ribosome-inactivating proteins or RIPs. These typical plant proteins receive a lot of attention in biological and biomedical research because of their unique biological activities toward animal and human cells. In addition, evidence is accumulating that some RIPs play a role in plant defense and hence can be exploited in plant protection. To understand the mode of action of RIPs and to optimize their medical and therapeutical applications and their use as antiviral compounds in plant protection, intensive efforts have been made to unravel the enzymatic activities of RIPs and provide a structural basis for these activities. Though marked progress has been made during the last decade, the enzymatic activity of RIPs has become a controversial issue because of the concept that RIPs possess, in addition to their classical RNA N-glycosidase and polynucleotide:adenosine glycosidase activity, other unrelated enzymatic activities. Moreover, the presumed novel enzymatic activities, especially those related to diverse nuclease activities, are believed to play an important role in various biological activities of RIPs. However, both the novel enzymatic activities and their presumed involvement in the biological activities of RIPs have been questioned because there is evidence that the activities observed are due to contaminating enzymes. We offer a critical review of the pros and cons of the putative novel enzymatic activities of RIPs. Based on the available data, it is suggested that there is little conclusive evidence in support of the presumed activities and that in the past too little attention has been given to the purity of the RIP preparation. The antiviral activity and mode of action of RIPs in plants are discussed in view of their classical and presumed novel enzymatic activities.  相似文献   

13.
It has been known that ribosome-inactivating proteins (RIPs) from plants damage ribosomes by removing adenine from a precise position of rRNA. Subsequently it was observed that all tested RIPs depurinate DNA, and some of them also non-ribosomal RNAs and poly(A), hence the denomination of adenine polynucleotide glycosylases was proposed. We report now that ricin, saporin-L2, saporin-S6, gelonin and momordin depurinate also poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase (auto modified enzyme), an enzyme involved in DNA repair. We observed also that all RIPs but gelonin induce transformation of fibroblasts, possibly as a consequence of damage to DNA and of the altered DNA repair system.  相似文献   

14.
BackgroundThe species from the genus Phytolacca constitute one of the best sources of ribosome-inactivating proteins (RIPs) that have been used both in the therapy against virus and tumors and in the construction of transgenic plants resistant to virus, bacteria, fungi and insects. Here we investigate new activities of three representative RIPs from Phytolacca dioica (dioicin 2, PD-S2 and PD-L4).ResultsThe three RIPs displayed, in addition to already reported activities, rRNA N-glycosylase activities against plant, bacterial and fungal ribosomes. Additionally dioicin 2 and PD-L4 displayed endonuclease activity on a supercoiled plasmid DNA, and dioicin 2 and PD-S2 arrested the growth of the fungus Penicillium digitatum. Furthermore, dioicin 2 induced caspase activation and apoptosis in cell cultures.ConclusionsThe different activities of the RIPs from Phytolacca dioica may explain the antipathogenic properties attributed to these RIPs in plants and their antiviral and antitumoral effects. In spite of the similarity in their rRNA N-glycosylase and DNA polynucleotide:adenosine glycosylase activities, they differed in their activities against viral RNA, plasmid DNA, fungi and animal cultured cells. This suggests that the presence of isoforms might optimize the response of the plant against several types of pathogens.General significanceRIPs from Phytolacca can induce plant resistance or tumor cell death not only by means of ribosome inactivation but also by the activities found in this report. Furthermore, the induction of cell death by different mechanisms turns these RIPs into more useful tools for cancer treatment rendering the selection of RIP-resistant mutants impossible.  相似文献   

15.
核糖体失活蛋白是一类可使真核细胞核糖体失活而抑制蛋白质合成的植物毒蛋白。它广泛存在于植物界,具有抗肿瘤、抗病毒、免疫调节、骨髓净化等多种生物活性。本文就核糖体失活蛋白在植物中的分类、分布和性质、功能特性、在生物医学中应用及其应用前景等作简要全面的阐述。  相似文献   

16.
Current status of ribosome inactivating proteins   总被引:2,自引:0,他引:2  
Ribosome inactivating proteins (RIPs) are a group of naturally occurring plant proteins with a RNA-N-glycosidases activity which depurinate rRNA at a specific universally conserved position (i.e. cleavage of N-glycosidic bond of a specific adenine of 28S rRNA). These proteins are found in different parts of plants, in concentrations ranging from a few micrograms to several hundred mg per 100 g of plant tissues. RIPs exist in two forms, type 1 having a single polypeptide chain with a molecular mass of approximately 30 kDa possessing N-glycosidase activity; and type 2 with two or four polypeptide chains having a molecular mass of approximately 60 kDa and approximately 120 kDa respectively showing lectin activity along with N-glycosidase moiety. Such biomolecules causing cytotoxicity are being exploited for designing immunotoxins/hormonotoxins using heterobifunctional conjugates. These carrier conjugates with the RIPs can influence cellular trafficking and inhibition of protein synthesis. We are witnessing a novel protein from plants that can be utilised for various therapeutical treatments ranging from cancers, AIDS and other viral diseases of present times.  相似文献   

17.
1. Ribosomes from M. domestica larvae were isolated and their susceptibility to the action of several ribosome-inactivating proteins (RIPs) from plants was tested. 2. Ribosome-inactivating proteins inhibited, to different extents, phenylalanine polymerization by ribosomes. 3. Analysis of RNA from RIP-treated ribosomes showed the appearance of an aniline-cleavable rRNA fragment resulting from the N-glycosidase activity of the RIPs. 4. The release of adenine from saporin 6-treated M. domestica ribosomes was demonstrated by h.p.l.c. analysis.  相似文献   

18.
Ribosome-inactivating proteins (RIPs) from plants inhibit protein synthesis by inactivating ribosomes. Some two-chain (type 2) RIPs are highly toxic and may play a role in plant defense. The lower toxicity of single-chain (type 1) RIPs reflects the lack of a protein domain able to bind to, and translocate the toxin across cell membranes. We studied the effect of single-chain RIPs, lychnin, momordin, gelonin, PAP-S and saporin S-6, in larvae of Anticarsia gemmatalis and Spodoptera frugiperda. After ingesting a total dose of 20 or 40 μg of the toxins, weight gain, survival rate, lesions in DNA and oxidative status (catalase and superoxide dismutase activities and lipidic peroxidation) of RIP-treated insects were assayed. Momordin was the less toxic in the biossays. S. frugiperda had a more pronounced weight loss on the 4th day of treatment and A. gemmatalis on the 10th day. RIP-induced mortality reached 57.13% for A. gemmatalis and 29.45% for S. frugiperda. RIP-treated insects showed a 2-3-fold increase in DNA lesions as assessed by the comet assay, but there were no correlations between stress markers and DNA damage. We conclude that single-chain RIPs are entomotoxic to lepidopteran insects causing extensive DNA lesions.  相似文献   

19.
The antiviral activity of the type-2 ribosome-inactivating protein (RIP) IRAb from Iris was analyzed by expressing IRAb in tobacco (Nicotiana tabacum L. cv. Samsun NN) plants and challenging the transgenic plants with tobacco mosaic virus (TMV). Although constitutive expression of IRAb resulted in an aberrant phenotype, the plants were fertile. Transgenic tobacco lines expressing IRAb showed a dose-dependent enhanced resistance against TMV infection but the level of protection was markedly lower than in plants expressing IRIP, the type-1 RIP from Iris that closely resembles the A-chain of IRAb. To verify whether IRIP or IRAb can also confer systemic protection against viruses, transgenic RIP-expressing scions were grafted onto control rootstocks and leaves of the rootstocks challenged with tobacco etch virus (TEV). In spite of the strong local antiviral effect of IRIP and IRAb the RIPs could not provide systemic protection against TEV. Hence our results demonstrate that expression of the type-1 and type-2 RIPs from Iris confers tobacco plants local protection against two unrelated viruses. The antiviral activity of both RIPs was not accompanied by an induction of pathogenesis-related proteins. It is suggested that the observed antiviral activity of both Iris RIPs relies on their RNA N-glycohydrolase activity towards TMV RNA and plant rRNA.Abbreviations GUS -Glucuronidase - IRAb Iris agglutinin b - IRIP Iris type-1 RIP - PAG Polynucleotide:adenosine glycosylase - PAP Phytolacca americana antiviral protein - PR Pathogenesis-related - RIP Ribosome-inactivating protein - TCS Trichosanthin - TEV Tobacco etch virus - TMV Tobacco mosaic virus  相似文献   

20.
Ribosome-inactivating proteins (RIPs) are toxic proteins synthesized by many plants and some bacteria, that specifically depurinate the 28S RNA and thus interrupt protein translation. RIPs hold broad interest because of their potential use as plant defense factors against pathogens. However, study of the activity of type I RIPs has been hampered since their expression in Escherichia coli has typically been toxic to the model system. Mirabilis expansa, an Andean root crop, produces a type I RIP called ME1 in large quantities in its storage roots. In this study, the cDNA sequence of ME1 was used to successfully express the recombinant ME1 protein in E. coli. The production of recombinant ME1 in E. coli was confirmed by Western blot analysis using anti-ME1 antibodies. The studies with fluorescence-labeled ME1 showed that ME1 can enter bacteria and be distributed in the cytoplasm uniformly, indicating its ability to access the protein synthesis machinery of the bacteria. The recombinant enzyme was active and depurinated yeast ribosomes. However, both native and recombinant ME1 proteins failed to depurinate the E. coli ribosomes, explaining the non-toxicity of recombinant ME1 to E. coli. Structural modeling of ME1 showed that it has folding patterns similar to other RIPs, indicating that ME1 and PAP, which share a similar folding pattern, can show different substrate specificity towards E. coli ribosomes. The results presented here are very significant, as few reports are available in the area of bacterial interaction with type I RIPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号