首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo.  相似文献   

3.
The presence of Foxp3(+) regulatory CD4(+) T cells in tumor lesions is considered one of the major causes of ineffective immune response in cancer. It is not clear whether intratumoral T(reg) cells represent T(reg) cells pre-existing in healthy mice, or arise from tumor-specific effector CD4(+) T cells and thus representing adaptive T(reg) cells. The generation of T(reg) population in tumors could be further complicated by recent evidence showing that both in humans and mice the peripheral population of T(reg) cells is heterogenous and consists of subsets which may differentially respond to tumor-derived antigens. We have studied T(reg) cells in cancer in experimental mice that express naturally selected, polyclonal repertoire of CD4(+) T cells and which preserve the heterogeneity of the T(reg) population. The majority of T(reg) cells present in healthy mice maintained a stable suppressor phenotype, expressed high level of Foxp3 and an exclusive set of TCRs not used by naive CD4(+) T cells. A small T(reg) subset, utilized TCRs shared with effector T cells and expressed a lower level of Foxp3. We show that response to tumor-derived antigens induced efficient clonal recruitment and expansion of antigen-specific effector and T(reg) cells. However, the population of T(reg) cells in tumors was dominated by cells expressing TCRs shared with effector CD4(+) T cells. In contrast, T(reg) cells expressing an exclusive set of TCRs, that dominate in healthy mice, accounted for only a small fraction of all T(reg) cells in tumor lesions. Our results suggest that the T(reg) repertoire in tumors is generated by conversion of effector CD4(+) T cells or expansion of a minor subset of T(reg) cells. In conclusion, successful cancer immunotherapy may depend on the ability to block upregulation of Foxp3 in effector CD4(+) T cells and/or selectively inhibiting the expansion of a minor T(reg) subset.  相似文献   

4.
5.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

6.
7.
CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) suppress T cell function and protect rodents from autoimmune disease. Regulation of T(reg) during an immune response is of major importance. Enhanced survival of T(reg) is beneficial in autoimmune disease, whereas increased depletion by apoptosis is advantageous in cancer. We show here that freshly isolated FACS-sorted T(reg) are highly sensitive toward CD95-mediated apoptosis, whereas other T cell populations are resistant to CD95-induced apoptosis shortly after isolation. In contrast, TCR restimulation of T(reg) in vitro revealed a reduced sensitivity toward activation-induced cell death compared with CD4(+)CD25(-) T cells. Thus, the apoptosis phenotype of T(reg) is unique in comparison to other T cells, and this might be further explored for novel therapeutic modulations of T(reg).  相似文献   

8.
9.
CD4(+)CD25(high)CD127(low/-) forkhead box p3 (Foxp3)(+) regulatory T cells (T(reg) cells) possess functional plasticity. Here we describe a higher frequency of T helper type 1 (T(H)1)-like, interferon-γ (IFN-γ)-secreting Foxp3(+) T cells in untreated subjects with relapsing remitting multiple sclerosis (RRMS) as compared to healthy control individuals. In subjects treated with IFN-β, the frequency of IFN-γ(+)Foxp3(+) T cells is similar to that in healthy control subjects. In vitro, human T(reg) cells from healthy subjects acquire a T(H)1-like phenotype when cultured in the presence of interleukin-12 (IL-12). T(H)1-like T(reg) cells show reduced suppressive activity in vitro, which can partially be reversed by IFN-γ-specific antibodies or by removal of IL-12.  相似文献   

10.
11.
Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.  相似文献   

12.
Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of CD4(+)CD25(+) regulatory T (T(reg)) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the T(reg) cells in K/BxN mice. These mice contained a higher percentage of Foxp3(+) T(reg) cells among the CD4(+) T cells than their BxN littermates. These T(reg) cells were anergic and efficiently suppressed the proliferation of na?ve CD4(+) T cells and cytokine production by effector CD4(+) T cells in vitro. Antibody-mediated depletion of CD25(+) cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the T(reg) cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.  相似文献   

13.
CD4(+)Foxp3(+) regulatory T cells (Tregs) have been considered crucial in controlling immune system homeostasis, and their derangement is often associated to autoimmunity. Tregs identification is, however, difficult because most markers, including CD25 and Foxp3, are shared by recently activated T cells. We show in this paper that CD4(+)Foxp3(+) T cells are generated in peripheral lymphoid organs on immunization and readily accumulate in the target organ of an autoimmune reaction, together with classical inflammatory cells, constituting up to 50% of infiltrating CD4(+) T cells. Most CD4(+)Foxp3(+) T cells are, however, CD25(-) and express proinflammatory cytokines such as IL-17 and IFN-γ, questioning their suppressive nature. Moreover, in vitro CD4(+) T lymphocytes from naive and autoimmune mice, stimulated to differentiate into Th1, Th2, Th17, and induced Tregs, display early mixed expression of lineage-specific markers. These results clearly point to an unprecedented plasticity of naive CD4(+) T cells, that integrating inflammatory signals may change their fate from the initial lineage commitment to a different functional phenotype.  相似文献   

14.
15.
Dendritic cells (DCs) induce immunity and immunological tolerance as APCs. It has been shown that DCs secreting IL-10 induce IL-10(+) Tr1-type regulatory T (Treg) cells, whereas Foxp3-positive Treg cells are expanded from naive CD4(+) T cells by coculturing with mature DCs. However, the regulatory mechanism of expansion of Foxp3(+) Treg cells by DCs has not been clarified. In this study, we demonstrated that suppressors of cytokine signaling (SOCS)-3-deficient DCs have a strong potential as Foxp3(+) T cell-inducing tolerogenic DCs. SOCS3(-/-) DCs expressed lower levels of class II MHC, CD40, CD86, and IL-12 than wild-type (WT)-DCs both in vitro and in vivo, and showed constitutive activation of STAT3. Foxp3(-) effector T cells were predominantly expanded by the priming with WT-DCs, whereas Foxp3(+) Treg cells were selectively expanded by SOCS3(-/-) DCs. Adoptive transfer of SOCS3(-/-) DCs reduced the severity of experimental autoimmune encephalomyelitis. Foxp3(+) T cell expansion was blocked by anti-TGF-beta Ab, and SOCS3(-/-) DCs produced higher levels of TGF-beta than WT-DCs, suggesting that TGF-beta plays an essential role in the expansion of Foxp3(+) Treg cells. These results indicate an important role of SOCS3 in determining on immunity or tolerance by DCs.  相似文献   

16.
Broad T cell depletion has been used as an integral part of treatment in transplantation and autoimmune diseases. Following depletion, residual T cells undergo homeostatic proliferation and convert to memory-like T cells. In this study, we investigated the effect of T cell depletion by antilymphocyte serum (ALS), a polyclonal anti-T cell Ab, on CD4(+) regulatory T cells. After ALS treatment, CD4(+)CD25(+) T cells underwent proliferation and expressed a memory T cell marker, CD44. One week after ALS treatment, both CD25(+) and CD25(-) T cells exhibited increased suppression of alloresponses in vitro, which waned thereafter to the levels mediated by naive CD25(+) and CD25(-) T cells. By real-time PCR analyses, ALS treatment of CD4-deficient mice adoptively transferred with Thy1.2(+)CD4(+)CD25(+)Foxp3(+) and Thy1.1(+)CD4(+)CD25(-)Foxp3(-) T cells resulted in the appearance of Thy1.2(+)CD4(+)CD25(-)Foxp3(+) and Thy1.1(+)CD4(+)CD25(+)Foxp3(+) T cells, suggesting the conversion between CD25(+) and CD25(-) T cells. Naive CD25(+) T cells expressed a higher level of intracellular Bcl-x(L) than CD25(-) T cells. Up-regulation of the Bcl-x(L) molecule during ALS-induced homeostatic expansion further promoted survival of CD25(+) and, to a lessor degree, CD25(-) cells. These results indicate that CD25(+) T cells are spared from ALS-mediated deletion, with some CD25(+) T cells converting to CD25(-) T cells, and continue to exhibit regulatory activity. The concomitant presence of T cell deletion and continuous regulatory T cell activity may underlie the therapeutic effect of ALS, particularly in treatment of autoimmune diseases.  相似文献   

17.
The expression of the collagen receptor alpha(1)beta(1) integrin (VLA-1) on CD4(+) T cells is largely restricted to CCR7(-)CD45RO(+) cells that localize to inflamed tissues. Moreover, neutralizing alpha(1) integrin, in vivo, has been shown to compromise cell-mediated immunity. Our current study shows that the expression of VLA-1 on human CD4(+) T cells is restricted to conventional effectors. In contrast, Foxp3(+) T regulatory cells (Tregs) do not express this receptor. Moreover, Foxp3 or VLA-1 expression remained a mutually exclusive event in CD4(+) T cells even upon polyclonal anti-CD3-induced activation. Because TNFalpha blockade ameliorates certain T cell-dependent autoimmune disorders in humans, we investigated, in vitro, whether neutralizing TNFalpha affected the balance between the proinflammatory VLA-1(+) effectors and the counteracting Tregs. We found that anti-CD3 stimulation of freshly isolated PBL from healthy individuals, coupled with continuous TNFalpha blockade, inhibited the typical activation-dependent generation of CD4(+)VLA-1(+) Th1 cells. In contrast, it augmented the outgrowth of VLA-1(neg/dim)CD25(high) and Foxp3(+)CD4(+) T cells. Indeed, repeated anti-CD3 stimulation coupled with TNFalpha blockade generated CD4(+) T cell lines enriched for VLA-1(-)Foxp3(+) Tregs. Importantly, these CD4(+) T cells displayed potent suppressive functions toward autologous CD4(+) PBL, including the suppression of the activation-dependent induction of VLA-1(+) effectors. Thus, we propose a novel mechanism by which anti-TNFalpha therapy may restore self-tolerance, by shifting the balance between VLA-1(+) effectors and Foxp3(+) Tregs, during immune activation, in favor of the latter suppressor cell population.  相似文献   

18.
As one of the main mediators of the endoplasmic reticulum unfolded protein response, heat shock protein gp96 is also an obligate chaperone for multiple TLRs including TLR4. We demonstrated recently that enforced cell surface expression of gp96 in a transgenic (Tg) mouse (96tm-Tg) conferred hyperresponsiveness to LPS and induced TLR4-dependent lupus-like autoimmune diseases. In this study, we investigated the function of CD4(+)CD25(+) Foxp3(+) regulatory T cells (T(reg)) in these mice in light of the important roles of T(reg) in the maintenance of peripheral tolerance against self-Ag as well as the increasing appreciation of TLR signaling on the regulation of T(reg). We found that the development of T(reg) was not impaired in 96tm-Tg mice. Contrary to the prediction of dampened T(reg) activity, we discovered that the suppressive functions of T(reg) were increased in 96tm-Tg mice. Inactivation of T(reg) during the neonatal stage of life exacerbated not only organ-specific diseases but also systemic autoimmune diseases. By crossing 96tm-Tg mice into the TLR4 null background, we demonstrated the critical roles of TLR4 in the amplification of T(reg) suppressive function. These findings illustrate that gp96 plays dual roles in regulating immune responses by augmenting proinflammatory responses and inducing T(reg) function, both of which are dependent on its ability to chaperone TLR4. Our study provides strong support to the notion of compensatory T(reg) activation by TLR ligation to dampen inflammation and autoimmune diseases.  相似文献   

19.
The molecular mechanisms controlling regulatory CD25(+)Foxp3(+)CD4(+) T cell (T(reg)) migration are central to in vivo immune responses. T(reg) cell subsets differentially express L-selectin, an adhesion molecule mediating lymphocyte migration to peripheral LNs (PLNs) and leukocyte rolling during inflammation. In this study, L-selectin was essential for T(reg) cell migration and normal tissue distribution. Specifically, there was a 90% reduction in PLN T(reg) cells in L-selectin(-/-) mice with a compensatory increase in spleen T(reg) cell numbers. Unexpectedly, however, 40% of the CD4(+) T cells remaining within PLNs of L-selectin(-/-) mice were T(reg) cells. The migratory properties of T(reg) cells were nonetheless markedly different from those of naive CD4(+) T cells, with 3- to 9-fold lower migration of T(reg) cells into PLNs and approximately 2-fold lower migration into the spleen. T(reg) cells also turned over cell surface L-selectin at a faster rate than CD25(-)CD4(+) T cells, but maintained physiologically appropriate L-selectin densities for optimal migration. Specifically, T(reg) cells expressed 30-40% more cell surface L-selectin when its endoproteolytic cleavage was blocked genetically, which resulted in a 2-fold increase in T(reg) cell migration into PLNs. However, increased L-selectin cleavage by T(reg) cells in wild-type mice was accompanied by 2-fold higher L-selectin mRNA levels, which resulted in equivalent cell surface L-selectin densities on T(reg) and naive T cells. Thus, T(reg) cells and CD25(-)CD4(+) T cells share similar requirements for L-selectin expression during migration, although additional molecular mechanisms constrain T(reg) cell migration beyond what is required for naive CD4(+) T cell migration.  相似文献   

20.
Follicular helper (T(FH)) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of T(FH) numbers maintains self tolerance. We describe a population of Foxp3(+)Blimp-1(+)CD4(+) T cells constituting 10-25% of the CXCR5(high)PD-1(high)CD4(+) T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (T(FR)) cells share phenotypic characteristics with T(FH) and conventional Foxp3(+) regulatory T (T(reg)) cells yet are distinct from both. Similar to T(FH) cells, T(FR) cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, T(FR) cells originate from thymic-derived Foxp3(+) precursors, not naive or T(FH) cells. T(FR) cells are suppressive in vitro and limit T(FH) cell and germinal center B cell numbers in vivo. In the absence of T(FR) cells, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the T(FH) differentiation pathway is co-opted by T(reg) cells to control the germinal center response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号