首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial distributions of net deposition rates of water soluble carbohydrate-free dry matter (WSC-free DM) and WSC were evaluated within and above the elongation zone of tall fescue (Festuca arundinacea Schreb.) leaf blades during light and darkness. Imported DM used for WSC-free DM synthesis during darkness (67% of the total in experiment I and 59% in experiment II) was greater than during light (47% in both experiments), suggesting that the 65% higher leaf elongation rate during darkness was accompanied by higher rates of synthesis of cellular structural components. Deposition rates of WSC in the basal and central part of the elongation zone (0-20 mm from the ligule) were similar during light and darkness, but above 20 millimeters WSC deposition occurred during light and WSC loss occurred during darkness. WSC deposition and loss throughout the elongation zone and the recently expanded tissue were mostly due to net synthesis and degradation of fructan. Fructan was predominantly low molecular weight and contributed about 50% of the total osmotic partial pressure of WSC. In the most actively growing region, where fructan synthesis was most rapid, no diurnal change occurred in molecular weight distribution of fructan. WSC solute concentrations were diluted in the most actively growing tissue during darkness because net monosaccharide and fructan deposition were unaltered and sucrose deposition was decreased, but growth-associated water deposition was increased by 77%. Net rates of fructan synthesis and degradation were not related to tissue sucrose concentration, but appeared to respond to the balance between assimilate import and assimilate use in synthesis of cellular structural components (i.e. WSC-free DM) and deposition of monosaccharides. Fructan synthesized in tissue during most active elongation was degraded when the respective tissue reached the distal limit of the elongation zone where assimilate import in darkness was insufficient to maintain synthetic processes associated with further differentiation of cells.  相似文献   

2.
Investigations were performed to better understand the carbon economy in the elongation zone of tall fescue leaf blades. Plants were grown at constant 21°C and continuous 300 micromoles per square meter per second photosynthetic photon flux density where leaf elongation was steady for several days. Elongation occurred in the basal 20 mm of the blade (0-20 millimeters above the ligule) and was maximum at 9 to 12 millimeters. Eight 3-millimeter long segments were sampled along the length of the elongation zone and analyzed for water-soluble carbohydrates. Sucrose concentration was high in the zone of cell division (0-6 millimeters) whereas monosaccharide concentration was high at and distal to the location where cell elongation terminated (20 millimeters). Fructan concentration increased in the basal part, then remained constant at about 85% of the total mass of water-soluble carbohydrates through the remainder of the elongation zone. Data on spatial distribution of growth velocities and substance contents (e.g. microgram fructan per millimeter leaf length) were used to calculate local net rates of substance deposition (i.e. excess rates of substance synthesis and/or import over substance degradation and/or export) and local rates of sucrose import. Rates of sucrose import and net deposition of fructan were positively associated with local elongation rate, whereas net rates of sucrose deposition were high in the zone of cell division and those of monosaccharide were high near the termination of elongation. At the location of most active elongation imported sucrose (29.5 milligrams per square decimeter per hour) was used largely for synthesis of structural components (52%) and fructan (41%).  相似文献   

3.
A gradient of development consisting of successive zones of cell division, cell elongation and cell maturation occurs along the longitudinal axis of elongating leaf blades of tall fescue (Festuca arundinacea Schreb.), a C3 grass. An increase in specific leaf weight (SLW; dry weight per unit leaf area) in the maturation region has been hypothesized to result from deposition of secondary cell walls in structural tissues. Our objective was to measure the transverse cell wall area (CWA) associated with the increase in SLW, which occurs following the cessation of leaf blade elongation at about 25 mm distal to the ligule. Digital image analysis of transverse sections at 5, 15, 45, 75 and 105 mm distal to the ligule was used to determine cell number, cell area and protoplast area of structural tissues, namely fibre bundles, mestome sheaths and xylem vessel elements, along the developmental gradient. Cell diameter, protoplast diameter and area, and cell wall thickness and area of fibre bundle cells were calculated from these data. CWA of structural tissues increased in sections up to 75 mm distal to the ligule, confirming the role of cell wall deposition in the increase in SLW (r2 = 0.924; P < or = 0.01). However, protoplast diameter of fibre cells did not decrease significantly as CWA increased, although mean thickness of fibre cell walls increased by 95 % between 15 and 105 mm distal to the ligule. Therefore, secondary cell wall deposition in fibre bundles of tall fescue leaf blades resulted in continued radial expansion of fibre cells rather than in a decrease in protoplast diameter.  相似文献   

4.
Root chicory (Cichorium intybus var. sativum) is a cash crop cultivated for inulin production in Western Europe. This plant can be exposed to severe water stress during the last 3 months of its 6-month growing period. The aim of this study was to quantify the effect of a progressive decline in water availability on plant growth, photosynthesis, and sugar metabolism and to determine its impact on inulin production. Water stress drastically decreased fresh and dry root weight, leaf number, total leaf area, and stomatal conductance. Stressed plants, however, increased their water-use efficiency and leaf soluble sugar concentration, decreased the shoot-to-root ratio and lowered their osmotic potential. Despite a decrease in photosynthetic pigments, the photosynthesis light phase remained unaffected under water stress. Water stress increased sucrose phosphate synthase activity in the leaves but not in the roots. Water stress inhibited sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1 fructosyltransferase after 19 weeks of culture and slightly increased fructan 1-exohydrolase activity. The root inulin concentration, expressed on a dry-weight basis, and the mean degree of polymerization of the inulin chain remained unaffected by water stress. Root chicory displayed resistance to water stress, but that resistance was obtained at the expense of growth, which in turn led to a significant decrease in inulin production.  相似文献   

5.
Water-soluble carbohydrate composition of mature (ceased expanding) leaf blades and the elongation zone of developing leaf blades was characterized in wheat (Triticum aestivum L.), tall fescue (Festuca arundinacea Schreb.), and timothy (Phleum pratense L.). These species were chosen because they differ in mean degree of polymerization (DP) of fructan in the mature leaf blade. Our objective was to compare the nature and DP of the fructan. Vegetative plants were grown with a 14-hour photoperiod and constant 21°C at the leaf base. Gel permeation chromatography of leaf blade extracts showed that the apparent mean fructan DP increased in the order wheat < tall fescue < timothy. Apparent mean DP of elongation zone fructan was higher than that of leaf blade fructan in wheat and timothy, but the reverse occurred for tall fescue. Low DP (≤10) and high DP (>10) pools were found in both tissues of tall fescue and wheat, but concentration of low DP fructan was very low in either tissue of timothy. All three species have high DP fructan. Comigration with standards on thin-layer chromotography showed that wheat contained 1-kestose and a noninulin fructan oligomer series. Tall fescue contained neokestose, 1-kestose and higher oligosaccharides that comigrated with neokestose-based compounds and inulins. Thin-layer chromatography showed that small amounts of fructose-containing oligosaccharides were present in timothy.  相似文献   

6.
Tall fescue leaf blades elongate at near constant rates during most of the light and dark periods of the diurnal cycle, with the dark rate being higher by 60 to 65%. Our objective was to determine relationships among diurnal rates of leaf elongation, deposition of water and deposition of dry matter (DM) into the elongation zone. Two separate experiments were conducted, both with a 15-hour photoperiod and constant 21°C at the growth zone. Increased rates of leaf elongation in darkness were due to proportionally increased rates of elongation of 4-millimeter segments of the elongation zone. Length of the total elongation zone was 30 millimeters in both light and darkness. The spatial distribution of water contents in the elongation zone varied little during the diurnal cycle. Thus, dark stimulation of leaf elongation rate (+65%) and of water deposition (+77%) into elongation zones were similar. Water content per unit leaf length increased by 50% between the basal and distal limits of the elongation zone, indicating that tissue also grew in the lateral and vertical dimensions. Longitudinal growth of tissue, however, allowed 5 to 7 times more water deposition into the elongation zone than growth in cross-sectional area. This relationship was similar in light and darkness. In both light and darkness net rates of DM deposition (microgram per millimeter leaf length per hour) increased from the zone of cell division towards the region of most active elongation, 10 to 15 millimeters from the ligule, then decreased towards the distal end of the elongation zone. Net DM deposition rates (microgram per hour) integrated over the 30-millimeter elongation zone were similar during light and darkness. Thus, DM in the elongation zone was diluted during darkness as a result of increased water deposition. Net DM deposition rates at and above the distal end of the elongation zone were clearly positive during the light, but were close to zero or negative in darkness. Thus, DM deposition into the elongation zone and the adjacent recently expanded tissue was differentially affected in the diurnal cycle, DM deposition occurred in both tissues in light, but was restricted to the elongation zone in darkness.  相似文献   

7.
The accumulation of total water-soluble carbohydrate, and specifically sucrose and fructan, by excised leaves of Phormium tenax and P. cookianum (family Phormiaceae J. G. Agardh, order Asparagales) was investigated. Total water-soluble carbohydrate content of excised leaves of P. tenax and P. cookianum increased during 48 h of continuous illumination at an average rate of 1.3 and 0.9 mg g(-1) fresh weight leaf per hour, respectively. The sucrose content of excised leaves increased throughout the experimental period. The fructan content of excised leaves of P. tenax increased slightly throughout the experimental period, whilst that of P. cookianum was variable and showed no overall change. Chemical and spectroscopic analysis of the fructans obtained from the two Phormium species showed that they were similar to each other and contained mostly 1-linked and terminal fructofuranosyl (Fruf) residues, together with smaller amounts of 6-linked Fruf, 1,6-branched Fruf, terminal and 6-linked glucopyranosyl residues. Separation of the fructans by thin-layer and high-performance anion-exchange chromatography revealed the presence of a complex mixture of fructo-oligosaccharides and higher molecular weight fructan. The branched structure of the fructans isolated from excised leaves of Phormium resembles that of fructans and fructo-oligosaccharides isolated from some related species within the order Asparagales (Agave vera cruz, Cordyline australis and Urginea maritima), but is distinct from the linear structure of fructans from others (Allium cepa and Asparagus officinalis). The structural heterogeniety of fructans within both the order Asparagales and superorder Liliiflorae may be a useful chemotaxonomic aid.  相似文献   

8.
Tall fescue (Festuca arundinacea Schreb.) leaf blades elongated 33% faster at continuous low than at continuous high irradiance (60 versus 300 micromoles per second per square meter photosynthetic photon flux density) when temperature of the leaf elongation zone was held constant at 21°C. Increased rate of elongation was associated with a near proportional increase in length of the elongation zone (+38%). In contrast, growth in width and thickness was decreased at low irradiance, resulting in only a 12% increase in leaf area production and 5% less total growth-associated water deposition than at high irradiance. At low irradiance dry matter (DM) import into the elongation zone was 28% less, and 55% less DM was used per unit leaf area produced. DM use in synthesis of structural components (i.e. DM less water-soluble carbohydrates) was only 13% less at low irradiance, whereas water-soluble carbohydrates (WSC) deposition was 43% less. The lower rate of WSC deposition at low irradiance was associated with a higher net rate of monosaccharide deposition (+39%), whereas net deposition rates for sucrose (−27%) and fructan (−56%) were less than at high irradiance. Still, at low irradiance, net fructan accumulation accounted for 64% of WSC deposition, i.e. 25% of DM import, demonstrating the high sink strength of the leaf elongation zone.  相似文献   

9.
Maize (Zea mays L. cv. Pioneer 3184) leaf elongation rate was measured diurnally and was related to diurnal changes in the activities of sucrose metabolizing enzymes and carbohydrate content in the elongating portion of the leaf. The rate of leaf elongation was greatest at midday (1300 hours) and was coincident with the maximum assimilate export rate from the distal portion of the leaf. Leaf elongation during the light period accounted for 70% of the total observed increase in leaf length per 24 hour period. Pronounced diurnal fluctuations were observed in the activities of acid and neutral invertase and sucrose phosphate synthase. Maximum activities of sucrose phosphate synthase and acid invertase were observed at 0900 hours, after which activity declined rapidly. The activity of sucrose phosphate synthase was substantially lower than that observed in maize leaf source tissue. Neutral invertase activity was greatest at midday (1200 hours) and was correlated positively with diurnal changes in leaf elongation rate. There was no significant change in the activity of sucrose synthase over the light/dark cycle. Sucrose accumulation rate increased during a period when leaf elongation rate was maximal and beginning to decline. Maximum sucrose concentration was observed at 1500 hours, when the activities of sucrose metabolizing enzymes were low. At no time was there a significant accumulation of hexose sugars. The rate of starch accumulation increased after the maximum sucrose concentration was observed, continuing until the end of the light period. There was no delay in the onset of starch mobilization at the beginning of the dark period, and essentially all of the starch was depleted by the end of the night. Mobilization of starch in the elongating tissue at night could account for a significant proportion of the calculated increase in the tissue dry weight due to growth. Collectively, the results suggested that leaf growth may be controlled by the activities of certain sucrose metabolizing enzymes and may be coordinated with assimilate export from the distal, source portion of the leaf. Results are discussed with reference to diurnal photoassimilation and export in the distal, source portion of the leaf.  相似文献   

10.
Bieleski RL 《Plant physiology》1993,103(1):213-219
Dry weight, water content, soluble carbohydrate content, and carbohydrate composition of daylily (Hemerocallis hybrid cv Cradle Song) flower petals were monitored in the 3 d leading up to full opening and in the first day of senescence. Timing of events was related to the time (hour 0) when flower expansion was 60% complete. Petal dry weight increased linearly from hour -62 (tight bud) to hour 10 (fully developed flower), then fell rapidly to hour 34 as senescence advanced. Increase in water content was proportional to dry weight increase from hour -62 to hour -14, but was more rapid as the bud cracked and the flower opened, giving an increase in fresh weight/dry weight ratio. Soluble carbohydrate was 50% of petal dry weight up to hour 10, then decreased during senescence to reach 4% by hour 34. Up until hour -14, fructan accounted for 80% of the soluble carbohydrate in the petals, whereas hexose accounted for only 2%. Fructan hydrolysis started just prior to bud crack at hour -14, reaching completion by hour 10 when no detectable fructan remained, and fructose plus glucose accounted for more than 80% of the total soluble carbohydrate. The proportion of sucrose remained constant throughout development. Osmolality of petal cell sap increased significantly during fructan hydrolysis, from 0.300 to 0.340 osmolal. Cycloheximide applied to excised buds between hour -38 and hour -14 halted both fructan hydrolysis and flower expansion. The findings suggest that onset of fructan hydrolysis, with the concomitant large increase in osmoticum, is an important event driving flower expansion in daylily.  相似文献   

11.
An experiment was designed to evaluate the role of N and C reserves on regrowth of Lolium perenne cv. Bravo following defoliation. By using two nitrogen fertilization levels together with three photoperiodic conditions, plants with variable contents of water-soluble carbohydrates (43-216 mg g-1 DW in stubble) and contrasting amounts of nitrogen (7-49 mg g-1 DW) were obtained. Plants were severely defoliated and regrowth was followed for 28 d under the same environmental conditions. The yield of leaf dry matter at the end of the regrowth period was not related to the initial level of carbohydrate reserves. However, levels of fructan in leaf sheaths and in elongating leaf bases strongly influenced the shoot yield during the first 2 d following defoliation. Fructan exohydrolase activity increased 2-3-fold in sheaths and 3.5-5-fold in elongation leaf bases, suggesting that not only fructans from sheaths but also fructans from immature cells may be used as substrates for growth. In contrast, no direct relationship was found between shoot production and nitrogen or soluble protein accumulation in source organs during early regrowth. A significant correlation existed with the initial amount of soluble proteins in sheaths and in elongating leaf bases after only 6 d of regrowth.  相似文献   

12.
Our objective was to examine alterations in carbohydrate status of leaf meristems that are associated with nitrogen-induced changes in leaf elongation rates of tall fescue (Festuca arundinacea Schreb.). Dark respiration rates, concentrations of nonstructural carbohydrates, and soluble proteins were measured in leaf intercalary meristems and adjacent segments of elongating leaves. The two genotypes used differed by 43% in leaf elongation rate. Application of high nitrogen (336 kilograms per hectare) resulted in 140% higher leaf elongation rate when compared to plants receiving low nitrogen (22 kilograms per hectare). Leaf meristems of plants receiving high and low nitrogen had dark respiration rates of 5.4 and 2.9 microliters O2 consumed per milligram structural dry weight per hour, respectively. Concentrations of soluble proteins were lower while concentrations of fructan tended to be slightly higher in leaf meristems of low-nitrogen plants when compared to high-nitrogen plants. Concentrations of reducing sugars, nonreducing sugars, and takadiastase-soluble carbohydrate of leaf meristems were not affected by nitrogen treatment. Total nonstructural carbohydrates of leaf meristems averaged 44 and 39% of dry weight for low- and high-nitrogen plants, respectively. Within the leaf meristem, approximately 74 and 34% of the pool of total nonstructural carbohydrate could be consumed per day in high- and low-nitrogen plants, respectively, assuming no carbohydrate import to the meristem occurred. Plants were able to maintain high concentrations of nonstructural carbohydrates in leaf meristems despite a 3-fold range in leaf elongation rates, suggesting that carbohydrate synthesis and transport to leaf intercalary meristems may not limit leaf growth of these genotypes.  相似文献   

13.
Triticum aestivum (wheat) plants grown at a daynight temperature of 1813 °C from anthesis were held as well watered controls, or subject to either a mild (large pot volume) or a more severe (small pot volume) water stress by withholding water from the time of anthesis. Extracts from the peduncle (enclosed by the flag leaf sheath) and the penultimate internode were prepared to determine the activities of fructan exohydrolase and acid invertase and to assess the level of hexose sugars, sucrose and fructans. Measurements were made of ear and individual grain weights and stem fresh weight and dry weight. Plant water relations at the time of each sampling were determined as the flag leaf water potential and the water content of individual organs. Water stress resulted in a shorter duration of kernel filling, smaller kernels at maturity and an earlier loss of stem weight. There was an increase in stem fructose and a fall in fructan level that preceded the loss of dry matter associated with water stress. Coincident with the early fall in fructan content under water stress there was a rise in both fructan exohydrolase and acid invertase in the internodes of stressed plants. This correlation suggests that the conversion of fructans to fructose might have resulted from enzyme induction associated with water stress, but as this conversion occurs before the major export of reserves from the stem it might be only indirectly related to changes in the demand for reserves.  相似文献   

14.
The invertases of Lolium temulentum have been characterized at the enzyme level. However, studies on the expression of the genes coding for these enzymes have been lacking. To elucidate the role of acid 'invertase-like' genes in sucrose metabolism and carbon partitioning in Gramineae further, three 'invertase-like' homologous clones were isolated from L. temulentum cDNA expression libraries based on leaf tissue, using maize soluble invertase probes. The effect of developmental stage and alterations in carbohydrate status on the expression and tissue distribution of these genes was investigated. The three highly homologous genes (Inv 1:2, Inv 1:4, and FT 2:2) show different patterns of expression and different tissue distribution. Inv 1:2 was predominantly expressed in root tissue. Expression increased during the dark in root and tiller base tissue. Minimal variations in gene expression were observed in leaf tissue following changes in carbohydrate status. Inv 1:4 was predominantly expressed in tiller bases, leaf sheath, and leaf base, with increased expression in tissue samples in the dark period. FT 2:2 was also predominantly expressed in tiller bases, leaf sheath, and leaf base. Higher expression was observed in leaf tissue following increases in carbohydrate content, in a manner that paralleled the regulation and spatial occurrence of fructan in the leaf tissue. Whilst invertases and fructosyltransferases are difficult to distinguish at the level of the whole sequence, analysis of 5' sequence and specific amino acids allows discrimination which correlates with patterns of expression within the tissue. Based on expression patterns and sequence characteristics, it is proposed that Inv 1:2 and Inv 1:4 code for soluble acid invertases, whilst FT 2:2 codes for a fructosyltransferase.  相似文献   

15.
Perennial ryegrass is the most important forage grass used in temperate agriculture. Transgenic perennial ryegrass events with altered fructan biosynthesis have the potential not only to increase animal production by improving digestibility of the grasses, but also to increase pasture intake by the animal due to lower neutral detergent fibre (NDF) concentrations. Transgenic perennial ryegrass plants were shown to have increased (P?<?0.05) in fructan concentrations of leaf blades in transgenic T0 events and have thus an increase in water-soluble carbohydrate and in vivo dry matter digestibility concentrations as well as a decrease in the NDF concentration within the plant in spring and summer. These changes in nutritive value have led to an increase in metabolisable energy of up to 1.7 MJ ME·kg DM?1 in selected T0 events compared to FLp418-20 during spring and summer, with no differences in autumn or winter. The field evaluation of these events and the further development of these events using molecular breeding technologies are described in this paper.  相似文献   

16.
Plant carbohydrates are of increasing interest as renewable feedstocks to replace petrochemicals in the generation of fuels and production of high-value chemicals. Greater understanding of the genetic control of diversity in fructan synthesis and accumulation would facilitate more directed channelling of feedstock to process in a ryegrass biorefinery. Divergent populations produced by phenotypic selection for water-soluble carbohydrate content have been used to investigate relationships between traits, and to identify patterns of genetic differentiation which indicate genomic regions under high and low selection pressure. Selection for high water-soluble carbohydrate content was associated with increased synthesis of large fructan polymers and increased accumulation of above-ground plant biomass, particularly during spring. Three rounds of selection and two rounds of recombination resulted in widespread genetic differentiation across the whole genome, causing reduced allelic richness and increasing homozygosity at some loci. A smaller number of loci were shown to be subject to high selection pressure. Breeding material subjected to many years of selection for water-soluble carbohydrate also showed allelic differences which may reflect the consequences of high selection pressure at some of these same loci. However, some of the loci unaffected in the divergent selection experiment showed similar effects. This might arise from differences in linkage disequilibrium in these two sets of plant materials, but more likely from the different genetic background of the germplasm. This illustrates the complex nature of the water-soluble carbohydrate trait in perennial ryegrass.  相似文献   

17.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

18.
Excised primary leaf blades of barley (Hordeum vulgare L. cv Gerbel) rapidly synthesized large quantities of fructan in the light and, upon transfer to the dark, they rapidly degraded it again. In the course of such a light/dark cycle the activities of sucrose-sucrose-fructosyltransferase (SST), fructan hydrolase, and invertase were measured in cell-free extracts of the blades. SST activity increased 20-fold within 24 hours in the light and disappeared again upon transfer to the dark during a similar period of time. Cycloheximide inhibited the increase of SST activity in the light indicating de novo synthesis. The loss of SST activity in the dark, however, was unaffected by cycloheximide. No SST activity appeared in the light if photosynthesis was inhibited by lowering the CO2 concentration in the atmosphere. However, SST activity and fructan synthesis were induced even in the dark and at a low CO2 concentration when the leaf blades were immersed in a solution of sucrose. Several other sugars, maltose and fructose in particular, had the same effect. Trehalose induced SST activity but no fructan synthesis occurred. The activities of fructan hydrolase and invertase changed little during the light/dark cycle. It is suggested that the control of SST activity in conjunction with the supply of photosynthates plays a key role in the regulation of fructan metabolism.  相似文献   

19.
The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30–60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance. Received: 16 June 2000 / Accepted: 17 October 2000  相似文献   

20.
The study was conducted in order to determine whether water stress affects the accumulation of dry matter in tomato fruits similarly to salinity, and whether the increase in fruit dry matter content is solely a result of the decrease in water content. Although the rate of water transport to tomato fruits decreased throughout the entire season in saline water irrigated plants, accumulation rates of dry matter increased significantly. Phloem water transport contributed 80–85% of the total water transport in the control and water-stressed plants, and over 90% under salinity. The concentration of organic compounds in the phloem sap was increased by 40% by salinity. The rate of ions transported via the xylem was also significantly increased by salinity, but their contribution to fruit osmotic adjustment was less. The rate of fruit transpiration was also markedly reduced by salinity. Water stress also decreased the rate of water transport to the tomato fruit and increased the rate of dry matter accumulation, but much less than salinity. The similar changes, 10–15%, indicate that the rise in dry matter accumulation was a result of the decrease in water transport. Other parameters such as fruit transpiration rates, phloem and xylem sap concentration, relative transport via phloem and xylem, solutes contributing to osmotic adjustment of fruits and leaves, were only slightly affected by water stress. The smaller response of these parameters to water stress as compared to salinity could not be attributed to milder stress intensity, as leaf water potential was found to be more negative. Measuring fruit growth of girdled trusses, in which phloem flow was inactive, and comparing it with ungirdled trusses validated the mechanistic model. The relative transport of girdled as compared to ungirdled fruits resembled the calculated values of xylem transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号