首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

2.
G Pines  B I Kanner 《Biochemistry》1990,29(51):11209-11214
Membrane vesicles from rat brain exhibit sodium-dependent uptake of L-[3H]glutamate in the absence of any transmembrane ion gradients. The substrate specificity of the process is identical with (Na+ + K+)-coupled L-glutamate accumulation. Although these vesicles are prepared after osmotic shock and are washed repeatedly, they contain about 1.5 nmol/mg of protein endogenous L-glutamate, apparently located inside the vesicles. The affinity of the process (Km approximately 1 microM) is similar to that of (Na+ + K+)-dependent accumulation by the L-glutamate transporter. Membrane vesicles have been disrupted by the detergent cholate, and the solubilized proteins have been subsequently reconstituted into liposomes. The reconstituted proteoliposomes also exhibit the above uptake--with the same characteristics--provided they contain entrapped cold L-glutamate. Counterflow is optimal when sodium is present on both sides of the membrane, but partial activity is still observed when sodium is present either on the inside or on the outside. Increasing the L-glutamate concentration above the Km results in counterflow completely independent of cis sodium. The initial rate of counterflow is 100-200-fold lower than that of net trans potassium dependent flux. The rate of net flux in the presence of trans sodium or lithium is about 10-fold lower than when choline or Tris are used instead. However, the rate of counterflow (no internal potassium present) was not stimulated by replacing internal sodium or lithium by internal choline. Therefore, optimal functioning of the transporter requires internal potassium while internal sodium and lithium are inhibitory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

4.
In previous studies it was shown that hepatocellular uptake of fatty acids is mediated by a specific fatty acid binding membrane protein. To determine now directly the driving forces for their entry into hepatocytes, the uptake of a representative long chain fatty acid, [3H]oleate, by basolateral rat liver plasma membrane vesicles was examined. Influx of oleate was stimulated by increasing the Na+ concentration of the medium. In the presence of an inwardly directed Na+ gradient (NaSCN, NaNO3, NaCl) oleate was accumulated during the initial uptake phase (20 s) at a concentration of 1.4-1.9-fold that at equilibrium (overshoot). This activation of influx was not observed after replacement of Na+ by Li+, K+, or choline+. Na+-dependent oleate uptake was significantly stimulated by creation of a negative intravesicular potential, either by altering the accompanying anions or by valinomycin-induced K+ diffusion potentials, suggesting an electrogenic transport mechanism. Na+-dependent fatty acid uptake was temperature dependent, with maximal overshoots occurring at 37 degrees C, and revealed saturation kinetics with a Km of 83.1 nM and Vmax of 2.9 nmol X min-1 X mg protein-1. These studies demonstrate that the carrier-mediated hepatocellular uptake of fatty acids represents an active potential-sensitive Na+-fatty acid cotransport system.  相似文献   

5.
Iodipamide, a cholecystographic agent, is known to be taken up by isolated hepatocytes by a mechanism similar or identical with the inward transport of bile salts (Petzinger, E., Joppen, C. and Frimmer, M. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 174-179). To elucidate its mode of transport, uptake of iodipamide was studied by rapid-filtration techniques on plasma membrane vesicles enriched in the sinusoidal fraction. Uptake was found to be dependent upon the temperature, the intravesicular volume, a gradient of monovalent cations (Na+, K+ or Li+) and the substrate concentration (saturation kinetics with respect to iodipamide: apparent Km = 70 microM, Vmax = 0.31 nmol per mg protein per min at 100 mM NaCl and 25 degrees C). Countertransport and transstimulation in tracer exchange experiments indicate that in vesicles, iodipamide uptake rather than binding occurs. Na+ could be replaced by K+ or Li+ in our system without any effect. However, in the presence of choline chloride a slight, but distinct reduction occurred. Iodipamide uptake was inhibited by cholate, phalloidin, 4,4'-diisothiocyanato-1,2-diphenylethane-2,2'-disulfonic acid and by bromosulfophthalein with inhibition being competitive in the case of cholate and non-competitive in the case of bromosulfophthalein. Alteration of the membrane potential by addition of NO3-, SCN- or SO4(2-) modified the uptake rate for iodipamide. The above results support our earlier hypothesis that the hepatocellular uptake of iodipamide is due to a carrier-mediated transport, probably similar to that of bile acids. However, translocation of iodipamide is assumed to be driven by the membrane potential only and not by Na+ contransport.  相似文献   

6.
Transport of Na+ and K+ ions through the plasma membrane of intact cells of the halotolerant microalga Dunaliella maritima Massjuk was studied. Ion fluxes through the plasma membrane were induced by hyperosmotic shock (uptake of Na+ by the cells is transformed into extrusion of Na+) or by addition of K+ to a suspension of K+-deficient cells (uptake of K+ by the cells is associated with extrusion of Na+). The pathway of Na+ extrusion from the D. maritima cells does not depend on the direction or value of the proton gradient on the plasma membrane. In particular, the efficiency of Na+ extrusion was not changed at extracellular pH values varying from 6.0 to 8.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) (20 microM) and the H+-ATPase inhibitor N,N-dicyclohexyl carbodiimide (DCCD) (25 and 100 microM) inhibited accumulation of K+ by the cells but did not influence Na+ extrusion. Significant acidification of the medium did not induce a net current of Na+ from the cells through a Na+/H+ antiporter. The data indicate that the Na+/H+ antiporter of the plasma membrane of D. maritima is not responsible for Na+ extrusion from the cells. These results can be explained by the involvement of a primary electrogenic Na+ pump (a Na+-transporting ATPase) in Na+ transfer through the plasma membrane of this alga.  相似文献   

7.
To assess the functions of Cl- -dependent glutamate "binding" (Cl- -dependent glutamate uptake) in synaptic membranes, possible effects of depolarization on the uptake were examined. When rat cerebral cortical slices were preincubated with depolarizing agents such as veratrine (7 micrograms/ml), 10 microM aconitine, 56 mM K+, and 50 microM monensin, [3H]glutamate uptake by the crude synaptic membranes, which were subsequently prepared from the pretreated slices, was increased by 60-85%. Stimulation of the glutamate uptake by predepolarization was dependent on Na+ but not on Ca2+. The bindings of gamma-[3H]aminobutyric acid and 5-[3H]hydroxytryptamine were not significantly affected by the predepolarization. Veratrine pretreatment increased the maximal density of the glutamate uptake sites without affecting the affinity for glutamate. Several characteristics of the uptake sites increased by the veratrine pretreatment coincided with those of Cl- -dependent glutamate uptake sites. Na+-dependent glutamate binding (Na+-dependent glutamate uptake) to the membranes was not affected by pretreatment with veratrine. The content of endogenous glutamate and the noninulin space in the membrane fractions were not changed by the predepolarization. The increase in the glutamate uptake induced by pretreatment with high K+ was reversible: it returned to the control level after a second incubation of the slices in control medium. These results suggest that the Cl- -dependent glutamate sequestration system in synaptic membranes is regulated by the membrane potential.  相似文献   

8.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

9.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

10.
A cDNA encoding a high-affinity Na(+)-dependent choline transporter (TrnCHT) was isolated from the CNS of the cabbage looper Trichoplusia ni using an RT-PCR-based approach. The deduced amino acid sequence of the CHT cDNA predicts a 594 amino acid protein of 64.74 kDa prior to glycosylation. TrnCHT has 80%, 79%, 76%, and 58% amino acid identity to putative CHTs from Anopheles gambiae, Drosophila melanogaster and Apis mellifera, and a cloned CHT from Limulus polyphemus, respectively. In situ hybridization of TrnCHT cRNA in whole-mount preparations of caterpillar CNS revealed that TrnCHT mRNA is expressed by hundreds of presumably cholinergic neurons present in both the brain and cortex of all segmental ganglia. Na(+)-dependent [(3)H]-choline uptake was induced in Sf9 cells in vitro following infection with a TrnCHT-expressing recombinant baculovirus. Virally induced [(3)H]-choline uptake was found to approximately equal the endogenous rate of choline uptake in insect cells, seen either after infection with a control virus or in TrnCHT-infected cells exposed to [(3)H]-choline in the absence of Na(+). The Na(+)-dependent component of [(3)H]-choline uptake by TrnCHT-infected cells was saturable with a K(m) for choline transport of 8.4 microM. Several compounds reported to be potent blockers of [(3)H]-choline uptake by cloned vertebrate choline transporters proved to be relatively weak inhibitors of choline uptake by Sf9 cells expressing TrnCHT. Hemicholinium-3 (K(i)=4.1 microM) and two oxoquinuclidium analogues of choline, quireston-A (K(i) approximately 10 microM) and quireston (K(i) approximately 100 microM) inhibited 50% of control uptake only at micromolar concentrations. The endogenous low-affinity Na(+)-independent uptake of [(3)H]-choline was also inhibited by high micromolar concentrations of hemicholinium-3.  相似文献   

11.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled L-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]L-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 degrees C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 degrees C. The values of Km were 90-489 microM in L-serine uptake. However, in the uptake of GABA the values of Km were 80-150 microM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

12.
The activities of diazepam and diphenylhydantoin as inhibitors of the fast and slow phases of 45Ca2+ uptake in response to K+ depolarization and of [3H]nitrendipine binding were examined in guinea pig cerebral cortex synaptosomes. The slow phase of 45Ca2+ uptake was abolished in Na+-free media (choline substitution) and was more sensitive to inhibition by 3,4-dichlorobenzamil and represents a Na+-dependent Ca2+ uptake process. The fast component of uptake represents activation of voltage-dependent Ca2+ channels. Diazepam (to 300 microM) was selectively active against the fast component of 45Ca2+ uptake. The benzodiazepines Ro 11-3624 and Ro 11-3128 were similarly selective with a modest stereoselectivity against the fast component of 45Ca2+ uptake. Diphenylhydantoin (100 and 200 microM) blocked nonselectively both fast and slow phases of Ca2+ uptake. Diazepam (60 microM) and diphenylhydantoin (200 microM) blocked [3H]nitrendipine binding in a competitive manner. Diazepam and diphenylhydantoin probably exert at least part of their anticonvulsant activity by inhibition of voltage-dependent Ca2+ channels.  相似文献   

13.
A Klip  E Gagalang  W J Logan 《FEBS letters》1983,152(2):171-174
Membrane vesicles of L6 myoblasts were prepared in order to study the amino acid transport system A. The role of the membrane in the adaptive response of transport to amino acid-supplementation was assessed. The membranes, prepared by N2 cavitation, displayed Na+ (but not K+)-dependent L-proline uptake. An overshoot of L-[3H]proline uptake was observed after exposure of the vesicles to an inward Na+ gradient. Isolated membrane vesicles loaded with 50 microM proline displayed countertransport (stimulation of proline uptake). It is concluded that the adaptive decrease of proline uptake observed in amino acid-supplemented cells cannot be accounted for by trans-inhibition of transport.  相似文献   

14.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

15.
The driving forces for taurocholate transport were determined in highly purified canalicular (cLPM) and basolateral rat liver plasma membrane (LPM) vesicles. Alanine transport was also examined for comparison. Inwardly directed Na+ but not K+ gradients transiently stimulated [3H]taurocholate (1 microM) and [3H]alanine (0.2 mM) uptake into basolateral LPM 3-4- fold above their respective equilibrium values (overshoots). Na+ also stimulated [3H]taurocholate countertransport and tracer exchange in basolateral LPM whereas valinomycin-induced inside negative K+ diffusion potentials stimulated alanine uptake but had no effect on taurocholate uptake. In contrast, in the "right-side out" oriented cLPM vesicles, [3H]taurocholate countertransport and tracer exchange were not dependent on Na+. Efflux of [3H]taurocholate from cLPM was also independent of Na+ and could be trans-stimulated by extra-vesicular taurocholate. Furthermore, an inside negative valinomycin-mediated K+ diffusion potential inhibited taurocholate uptake into and stimulated taurocholate efflux from the cLPM vesicles. These studies provide direct evidence for a "carrier mediated" and potential-sensitive conductive pathway for the canalicular excretion of taurocholate. In addition, they confirm the presence of a possibly electroneutral Na+-taurocholate cotransport system in basolateral membranes of the hepatocyte.  相似文献   

16.
Gel chromatography of solubilized Ehrlich cell plasma membranes and preformed asolectin vesicles coupled to a freeze-thaw cycle results in the reconstitution of 3-O-methyl-D-glucose transport. The transport activity of the liposomes formed is critically dependent on the cation present during reconstitution. Liposomes formed in K+ show high levels of carrier-mediated 3-O-methyl-D-glucose uptake (495 pmol/min/mg protein) while those formed in Na+ do not (33 pmol/min/mg protein). The inactivity in Na+ is not due to a diminished incorporation of glucose transporter nor is it due to carrier molecules reconstituted with a different orientation from those in K+ liposomes. Instead, the low glucose transport level in Na+ liposomes is related to the small size of vesicles formed with Na+. A second freeze-thaw cycle in K+ causes a two- to threefold increase in the available intravesicular volume of Na+ liposomes and results in an eightfold increase in carrier-mediated 3-O-methyl-D-glucose uptake. K+ liposomes, treated in an identical manner, show only a twofold increase in uptake. The glucose transporter was identified as a protein with a molecular mass range of 44.7 to 66.8 kDa, by the D-glucose-inhibitable photoincorporation of [3H]cytochalasin B. The carrier protein is inserted in reconstituted vesicles in a nonrandom manner with at least 80% of the molecules oriented with the cytoplasmic domain accessible to the external medium. In contrast, the neutral Na+-dependent amino acid transport system appears to be randomly reconstituted.  相似文献   

17.
PC12 pheochromocytoma cells take up 3,4-dihydroxyphenylethylamine (dopamine) and norepinephrine by a Na+-dependent, cocaine-sensitive system. The kinetics suggest that the same transporter functions for both substrates. Xylamine, a nitrogen mustard that blocks catecholamine uptake into neurons, irreversibly inhibited norepinephrine uptake into PC12 (IC50 = 15 microM). Pretreatment with 10 microM xylamine did not inhibit norepinephrine transport if 10 microM cocaine or 100 microM norepinephrine was also present during the pretreatment period or if Na+ was absent. These results indicate that xylamine must interact with the norepinephrine transporter to inhibit norepinephrine uptake. PC12 accumulated [3H]xylamine; this uptake had Na+-dependent and Na+-independent components. The Na+-dependent uptake was saturable (Km = 13 microM), and it was inhibited by cocaine (IC50 = 0.6 microM), desipramine (IC50 less than 1 nM), and norepinephrine (IC50 = 1 microM). Several proteins became prominently labeled when intact PC12 cells were incubated with [3H]xylamine; these proteins were enriched in a plasma membrane fraction and have molecular weights of 17,000, 24,000, 31,000, 33,000, 41,000, 42,000, 52,000, and 80,000. Other proteins were labeled less prominently. The labeling of all proteins was markedly decreased when the incubation with [3H]xylamine occurred in the presence of cocaine, desipramine, gramicidin D, or in a Na+-free buffer. These results indicate that xylamine must be transported into the cells for covalent binding to proteins to occur. [3H]Xylamine labeled essentially the same proteins when incubated with cell homogenates, but competition experiments with bretylium, desipramine, and cocaine failed to reveal which of the [3H]xylamine-labeled proteins is associated with the norepinephrine transporter.  相似文献   

18.
Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.  相似文献   

19.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

20.
The dependence of L-alanine uptake by 3T6 and CHO-K1 cells on Na+ electrochemical gradient has been studied. The Na+ chemical gradient was changed by a short-term (partial or complete) replacement of Na+ for choline. The membrane potential change was achieved by addition of potassium ionophore--valinomycin (10 microM) into the medium. It is determined that the value of Km for alanine uptake by 3T6 cells increases from 2 mM, with 140 mM Na+ in the medium, up to 30 mM, if the replacement of Na+ for choline is complete. Similar results are obtained for CHO cells. The membrane potential increase under the influence of valinomycin leads to the increase in the value of Vmax of the uptake. The data obtained are interpreted on the basis of the well known scheme of Na+ alanine complex transfer, where Na+ increases the affinity of the carrier to the amino acid, and the membrane potential increases the carrier mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号