首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Evolutionary relationships of the two basal fungal phyla Chytridiomycota and Zygomycota are reviewed in light of recent molecular phylogenetic investigation based on rDNA (nSSU, nLSU rDNA), entire mitochondrial genomes, and nuclear protein coding gene sequences (e.g., EF-1alpha, RPB1). Accumulated molecular evidence strongly suggests that the two basal fungal phyla are not monophyletic. For example, the chytridiomycete order Blastocladiales appears to be closely related to the zygomycete order Entomophthorales. Within the Zygomycota, a monophyletic clade, consisting of the Dimargaritales, Harpellales, and Kickxellales, which is characterized by a shared unique septal ultrastructure, was identified. Moreover, evidence for the exclusion of zygomycete orders Amoebidiales and Eccrinales from the Fungi, and their placement at the Animal-Fungi boundary has been clearly documented. Microsporidia, a group of amitochondriate organisms currently under intensive study, is not supported as derived within the Fungi, but a fungal affinity cannot be ruled out. Taking these molecular phylogenetic studies into account, we proposed a hypothetical evolutionary framework of basal fungi.  相似文献   

2.
Eight species of Harpellales and three species of Eccrinales (Zygomycota: Trichomycetes) were found associated with the digestive tract of arthropods from terrestrial and aquatic environments in the central Amazon region of Brazil. New species of Harpellales include: Harpella amazonica, Smittium brasiliense, Genistellospora tropicalis in Simuliidae larvae and Stachylina paucispora in Chironomidae larvae. Axenic cultures of S. brasiliense were obtained. Probable new species of Enterobryus (Eccrinales), Harpella, and Stachylina (Harpellales) are described but not named. Also reported are the previously known species of Eccrinales, Passalomyces compressus and Leidyomyces attenuatus in adult Coleoptera (Passalidae), and Smittium culisetae and Smittium aciculare (Harpellales) in Culicidae and Simuliidae larvae, respectively. Comments on the distribution of some of these fungi and their hosts in the Neotropics are provided.  相似文献   

3.
Phylogeny of the Zygomycota based on nuclear ribosomal sequence data   总被引:4,自引:0,他引:4  
  相似文献   

4.
Fourteen species of Trichomycetes living in the guts of aquatic insects are reported from two provinces of Argentina, Misiones and Tierra del Fuego. Twelve of the species belong to the Harpellales and two are Amoebidiales. Five harpellid species are reported from Misiones in the extreme northeast of the country (Genistellospora homothallica, Harpella tica, Smittium culisetae, Smittium sp., Stachylina sp.) and seven are from Tierra del Fuego, the southern tip of South America (H. meridianalis, Glotzia sp., S. culicis, S. cellaspora, S. imitatum, Stachylina minima, Penella simulii). Insect hosts all were immature stages of Culicidae, Simuliidae, Chironomidae, Ceratopogonidae (Insecta: Diptera), and Ephemeroptera and Plecoptera. The lower diversity of Trichomycetes found at Misiones, which has a subtropical climate and rainforest vegetation, was due possibly to the warmer temperatures of the water (15-24 C), compared to the colder streams of Tierra del Fuego (9-15 C), with forests and steppes as typical vegetation.  相似文献   

5.
White MM  Siri A  Lichtwardt RW 《Mycologia》2006,98(2):333-352
Collections of trichomycete symbionts of larval aquatic insects in Great Smoky Mountains National Park and vicinity in the southern Appalachian region of the USA resulted in finding many taxa of Harpellales, including an unusual new monotypic genus, Barbatospora ambicaudata in Simuliidae, and five new species in Thaumaleidae or Chironomidae, Harpellomyces montanus, Smittium lentaquaticum, Sm. minutisporum, Stachylina gravicaudata and St. stenospora. In addition a new species of Amoebidium (Amoebidiales), A. appalachense, attached to the anal tubules of bloodworms (Chironomidae) is described. Axenic cultures of three of the new taxa were obtained, plus Sm. culisetae. Fourteen identified species representing 13 genera of previously known Harpellales are recorded from Plecoptera, Ephemeroptera and Diptera, as well as a new Dipteran host record for an unidentified harpellid that was found in a Blephariceridae. Also identified were Paramoebidium corpulentum and many undetermined species of Paramoebidium (Amoebidiales) from four orders of aquatic insect larvae. The occurrence of an Enterobryus species in Diplopoda and another Eccrinales from an aquatic beetle is noted. Amoebidiales,  相似文献   

6.
Fifty-nine species of gut fungi in the orders Harpellales and Asellariales, Class Trichomycetes, have been collected in eight tropical regions of the world, some species occurring in more than one geographic region. Regarding the Harpellales, the rather low number of taxa, compared to reports in more temperate localities, is due primarily to relatively few collections in the tropics, as well as the usually warmer waters found in tropical regions that often have a lower species richness of potential immature insect hosts. Asellariales in freshwater, marine, and terrestrial habitats, likewise, have been seldom inventoried in the tropics. Nonetheless, it is clear that the tropics are fertile grounds for discovering new genera and species, and future investigations will undoubtedly reveal many new taxa that will lead to a better understanding of the evolution and biogeography of Trichomycetes.  相似文献   

7.
Bench ME  White MM 《Mycologia》2012,104(1):295-312
Trichomycetes, or gut fungi, are currently recognized as an ecological group of fungi and protists that inhabit the guts of immature insects or other stages and types of arthropods. The geographic distribution of these endosymbionts is worldwide. However trichomycete data from the Pacific Northwest are limited and this is the first account of gut fungi in Idaho. We report on the trichomycetes from a single site, Cottonwood Creek at Military Reserve Park, Boise, Idaho, where periodic surveys for more than a year resulted in the discovery of four newly named, three probably new but unnamed and 15 previously known species. Among the Harpellales three new species, Capniomyces sasquatchoides, Harpella torus and Lancisporomyces lampetriformis, are described, with two possibly new species of Smittium detailed but unnamed at this time pending further collections. A Genistelloides cf. hibernus also is included as a possible new species. One new species of Amoebidiales, Paramoebidium hamatum, is described as well. Hosts in which the gut fungi were recovered include larvae or nymphs of Diptera (Chironomidae and Simuliidae), Ephemeroptera (Baetidae) and Plecoptera (Capniidae and Taeniopterygidae). We hope to demonstrate that future surveys or bioprospecting investigations into the biodiversity of these early-diverging fungi in this region and worldwide remain promising.  相似文献   

8.
The Mesomycetozoea (Ichthyosporea) includes a group of fungus-like microorganisms which diverged near the animal fungus divide and is basal to the animal lineage in the Opisthokont supergroup. The composition of species within this group has changed considerably since it was reviewed by Mendoza et al. in 2002. There have been many additions to the group as a result of phylogenetic sequencing, and new species have been discovered following examination of digestive tracts of arthropods and other groups of invertebrates. Furthermore, ecological surveys and environmental sampling have revealed a high diversity of Mesomycetozoean phylotypes in marine, freshwater and terrestrial environments. Initially considered a group comprising mainly fish parasites, the Mesomycetozoea are now known to live in association with a wide range of host organisms including invertebrates, fish, amphibians, birds and mammals. Here we review the Mesomycetozoea and examine the broad spectrum of its ecology in the light of recent research based on sequence data, cultivation and in vivo studies.  相似文献   

9.
Despite numerous studies, there is no single accepted hypothesis of eutherian ordinal relationships. Among the least understood mammalian orders is the group Insectivora. Currently, molecular and morphological data are in conflict over the possible monophyly of the living members of Insectivora (lipotyphlans), and the relationships within the group remain largely unresolved. One of the primary criticisms concerning molecular analyses is the noticeable lack of data from a well-sampled group of lipotyphlan insectivores. The mitochondrial 12S rRNA gene has been widely used to resolve interordinal and intraordinal relationships across a variety of mammalian taxa. This study compares 118 complete mammalian 12S rRNA sequences, representing all of the 18 eutherian orders and 3 metatherian orders, and includes as well taxa from each of the six families of lipotyphlan insectivores. Insectivoran lineages are thought to have diverged concurrently with the general radiation of mammalian orders. This study suggests that the 12S rRNA sequences lack the ability to resolve relationships extending into this period. This would explain the polyphyly, unusual affinities, and low support derived in this and other studies employing 12S rRNA sequences to diagnose relationships among eutherian orders. The results of these analyses suggest that even extensive taxon sampling is insufficient to provide well supported groups among eutherian orders. Additional genes and species sampling will be necessary to elucidate whether the Insectivora form a monophyletic group.  相似文献   

10.
The marine order Arthrotardigrada (class Heterotardigrada, phylum Tardigrada) is known for its conspicuously high morphological diversity and has been traditionally recognized as the most ancestral group within the phylum. Despite its potential importance in understanding the evolution of the phylum, the phylogenetic relationships of Arthrotardigrada have not been clarified. This study conducted molecular phylogenetic analyses of the order encompassing all families except Neoarctidae using nuclear 18S and 28S rRNA fragments. Data from two rare families, Coronarctidae and Renaudarctidae, were included for the first time. The analyses confirmed the monophyly of Heterotardigrada and inferred Coronarctidae as the sister group to all other heterotardigrade taxa. Furthermore, the results support a monophyletic Renaudarctidae + Stygarctidae clade, which has been previously suggested on morphology. Our data indicated that two subfamilies currently placed in Halechiniscidae are only distantly related to this family. We propose that these taxa are each elevated to family level (Styraconyxidae (new rank) and Tanarctidae (new rank)). The morphology of tardigrades is discussed in the context of the inferred phylogeny.  相似文献   

11.
We determined 1,600 base pairs of DNA sequence in the 18S small ribosomal subunit from two geographically distinct isolates of Dermosporidium penneri. Maximum likelihood and parsimony analysis of these sequences place D. penneri in the order Dermocystida of the class Mesomycetozoea. The 18S rRNA sequences from these two isolates only differ within a single region of 16 contiguous nucleotides. Based on the distant phylogenetic relationship of these organisms to Amphibiocystidium ranae and similarity to Sphaerothecum destruens we propose the organism be renamed Amphibiothecum penneri.  相似文献   

12.
Trichomycete fungi are associated with digestive tract of black fly larvae. These fungi have not been studied in Brazil, knowing them and their relationship with black flies could be an alternative to control vector populations. The objectives of this study were to survey the Trichomycete fungi associated with larvae of Simulium goeldii and S. ulyssesi, and to determine if there is specificity and/or difference in the infection rates in these species. Black flies were collected in Central Amaz?nia, Brazil. Three genera of Trichomycetes were found: Harpella, Genistellospora and Smittium. All these fungi were common to both black fly species.  相似文献   

13.
The phylogenetic position of the recently extinct marsupial ''wolf'', or thylacine (Thylacinus cynocephalus), has been a source of contention in mammalian systematics for nearly a century. Thylacines were endemic to Australasia, but possessed striking anatomical similarities to Oligo-Miocene borhyaenid marsupials of South America. At issue has been whether these features are indicative of common ancestry or convergent adaptation to carnivory. Recent morphological studies have supported both conclusions. Although current marsupial classifications group thylacines with Australian dasyuromorphians, this putative clade is characterized by mostly primitive morphological features. Attempts to determine thylacine affinities with ancient protein and DNA analyses have supported, but not resolved, a dasyuromorphian placement. We report 1546 bp of mitochondrial DNA sequence (from cytochrome b and 12S rRNA genes) and 841 bp of nuclear protamine gene sequence from the thylacine and representatives of all or most other marsupial orders. Phylogenetic analysis of these sequences shows unambiguously that thylacines are members of Dasyuromorphia, and suggests a late Oligocene or very early Miocene divergence of familial lineages.  相似文献   

14.
Transformation in fungi.   总被引:40,自引:0,他引:40       下载免费PDF全文
Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.  相似文献   

15.
Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater precision and efficiency than is possible in other species that show a high proportion of DNA integration events at nonhomologous (ectopic) sites. With a little more trouble, however, the methodology pioneered for S. cerevisiae can be applied to other fungi too. Transformation of fungi with DNA constructs designed for high gene expression and efficient secretion of gene products appears to have great commercial potential.  相似文献   

16.
The molecular relationship of placental mammals has attracted great interest in recent years. However, 2 crucial and conflicting hypotheses remain, one with respect to the position of the root of the eutherian tree and the other the relationship between the orders Rodentia, Lagomorpha (rabbits, hares), and Primates. Although most mitochondrial (mt) analyses have suggested that rodents have a basal position in the eutherian tree, some nuclear data in combination with mt-rRNA genes have placed the root on the so-called African clade or on a branch that includes this clade and the Xenarthra (e.g., anteater and armadillo). In order to generate a new and independent set of molecular data for phylogenetic analysis, we have established cDNA sequences from different tissues of various mammalian species. With this in mind, we have identified and sequenced 8 housekeeping genes with moderately fast rate of evolution from 22 placental mammals, representing 11 orders. In order to determine the root of the eutherian tree, the same genes were also sequenced for 3 marsupial species, which were used as outgroup. Inconsistent with the analyses of nuclear + mt-rRNA gene data, the current data set did not favor a basal position of the African clade or Xenarthra in the eutherian tree. Similarly, by joining rodents and lagomorphs on the same basal branch (Glires hypothesis), the data set is also inconsistent with the tree commonly favored in mtDNA analyses. The analyses of the currently established sequences have helped examination of problematic parts in the eutherian tree at the same time as they caution against suggestions that have claimed that basal eutherian relationships have been conclusively settled.  相似文献   

17.
Four new species of arbuscular mycorrhizal (AM) fungi (Glomeromycota) were isolated from the rhizosphere of endemic metallophytic plants in ultramafic soils in New Caledonia (South Pacific) and propagated on Sorghum vulgare. Acaulospora saccata and A. fragilissima are placed in the Acaulosporaceae, Scutellospora ovalis in the Gigasporaceae, and Rhizophagus neocaledonicus in the Glomeraceae. The novelty of these species is supported by morphological characters of spores and phylogenetic analyses of sequences of the rDNA region, comprising partial small subunit rRNA gene, the internal transcribed spacers, 5.8S rRNA gene, and the partial large subunit rRNA gene. New Caledonia is known for its high degree of endemism in plants, which is due to its geographic position and geological history. This is the first taxonomic study exploring local Glomeromycota of this island, which may help to address the question of possible AMF endemism in future studies.  相似文献   

18.
During a survey of endophytic fungi from the cactus Tacinga inamoena in a Brazilian tropical dry forest (Caatinga) some undescribed ascomycetous fungi were isolated. These fungi are characterized by superficial and immersed, globose to subglobose, smooth or hairy ascomata, bitunicate asci, and muriformly septate, ellipsoidal ascospores. Multigene phylogenetic analyses using sequences from partial ITS, SSU and LSU nrDNA and the translation elongation factor 1-alpha gene (tef1) demonstrated a monophyletic clade accommodating these endophytic fungi in the class Dothideomycetes, closely related to the order Tubeufiales. Based on morphological features and phylogenetic analyses, these fungi could not be placed in the order Tubeufiales, in the new order Wiesneriomycetales, or any other known genus in the class Dothideomycetes. Thus, two new genera (Bezerromyces, with B. brasiliensis and B. pernambucoensis, and Xiliomyces with X. brasiliensis), a new family (Bezerromycetaceae) and a new order (Bezerromycetales) are introduced to accommodate these novel taxa. Our phylogenetic analyses also demonstrated that the clade accommodating Wiesneriomycetaceae represents a new order, here introduced as Wiesneriomycetales.  相似文献   

19.
Basal relationships of Coleoptera inferred from 18S rDNA sequences   总被引:5,自引:2,他引:3  
The basal relationships of the hyperdiverse insect order Coleoptera (beetles) have proven difficult to resolve. Examination of beetle suborder relationships using 18S ribosomal DNA reveals a previously unproposed relationship among the four major lineages: [(Archostemata(Myxophaga(Adephaga, Polyphaga)))]. Adding representatives of most other insect orders results in a non-monophyletic Coleoptera. However, constraining Coleoptera and its suborders to be monophyletic, in analyses of beetle and outgroup sequences, also results in the above beetle relationships, with the root placed between Archostemata and the remaining suborders.  相似文献   

20.
In the early times of taxonomy of arbuscular mycorrhizal fungi (Glomeromycota), exclusively sporocarpic species were described. Since then the focus has mainly shifted to species forming spores singly. For many of the sporocarpic species, no molecular data have been made available, and their phylogenetic position has remained unclear. We obtained small subunit ribosomal rDNA and internal transcribed spacer data from specimens of glomeromycotan sporocarps from tropical areas that were assigned to three morphospecies. The complete sequence of the 18S small rDNA subunit sequence, internal transcribed spacers (ITS) 1 and 2 and 5.8S rDNA subunit, was determined from a sporocarp of Glomus fulvum. Partial sequences of the small subunit and the other regions were obtained from Glomus pulvinatum and the newly described species Glomus megalocarpum. Molecular phylogenetic analyses placed all species analyzed as a monophyletic sister group to the Diversispora spurca/Glomus versiforme clade group (“Glomus group C”) within the Diversisporales. The phylogenetic divergence from other known species suggests that this clade may constitute a new genus. These findings will have important consequences for taxon definition in the Diversisporales. They will facilitate identification of these fungi using rDNA sequences within colonized roots or the environment. Taxonomic novelties: Glomus megalocarpum D. Redecker  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号