首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemp fibers are very interesting natural material for textile and technical applications now. Applying hemp fibers to the apparel sector requires improved quality fibers. In this paper, hemp fibers were modified with sodium hydroxide solutions (5% and 18% w/v), at room and boiling temperature, for different periods of time, and both under tension and slack, in order to partially extract noncellulosic substances, and separate the fiber bundles. The quality of hemp fibers was characterised by determining their chemical composition, fineness, mechanical and sorption properties. The modified hemp fibers were finer, with lower content of lignin, increased flexibility, and in some cases tensile properties were improved. An original method for evaluation of tensile properties of hemp fibers was developed.  相似文献   

2.
Collagen is the primary structural element in extracellular matrices. In the form of fibers it acts to transmit forces, dissipate energy, and prevent premature mechanical failure in normal tissues. Deformation of collagen fibers involves molecular stretching and slippage, fibrillar slippage, and, ultimately, defibrillation. Our laboratory has developed a process for self-assembly of macroscopic collagen fibers that have structures and mechanical properties similar to rat tail tendon fibers. The purpose of this study is to determine the effects of subfibrillar orientation and decorin incorporation on the mechanical properties of collagen fibers. Self-assembled collagen fibers were stretched 0-50% before cross-linking and then characterized by microscopy and mechanical testing. Results of these studies indicate that fibrillar orientation, packing, and ultimate tensile strength can be increased by stretching. In addition, it is shown that decorin incorporation increases ultimate tensile strength of uncross-linked fibers. Based on the observed results it is hypothesized that decorin facilitates fibrillar slippage during deformation and thereby improves the tensile properties of collagen fibers.  相似文献   

3.
Regenerated cellulose-silk fibroin blends fibers   总被引:1,自引:0,他引:1  
Fibers made of cellulose and silk fibroin at different composition were wet spun from solutions by using N-methylmorpholine N-oxide hydrates (NMMO/H(2)O) as solvent and ethanol as coagulant. Different spinning conditions were used. The fibers were characterized by different techniques: FTIR-Raman, scanning electron microscopy, wide-angle x-ray diffraction, DSC analysis. The results evidence a phase separation in the whole blends compositions. The tensile characterization, however, illustrates that the properties of the blends fibers are higher respect to a linear behaviour between the pure polymers, confirming a good compatibility between cellulose and silk fibroin. The fibers containing 75% of cellulose show better mechanical properties than pure cellulose fibers: modulus of about 23 GPa and strength to break of 307 MPa.  相似文献   

4.
ABSTRACT

The mechanical and structural properties of the extracellular matrix (ECM) play an important role in regulating cell fate. The natural ECM has a complex fibrillar structure and shows nonlinear mechanical properties, which are both difficult to mimic synthetically. Therefore, systematically testing the influence of ECM properties on cellular behavior is very challenging. In this work we show two different approaches to tune the fibrillar structure and mechanical properties of fibrin hydrogels. Addition of extra thrombin before gelation increases the protein density within the fibrin fibers without significantly altering the mechanical properties of the resulting hydrogel. On the other hand, by forming a composite hydrogel with a synthetic biomimetic polyisocyanide network the protein density within the fibrin fibers decreases, and the mechanics of the composite material can be tuned by the PIC/fibrin mass ratio. The effect of the changes in gel structure and mechanics on cellular behavior are investigated, by studying human mesenchymal stem cell (hMSC) spreading and differentiation on these gels. We find that the trends observed in cell spreading and differentiation cannot be explained by the bulk mechanics of the gels, but correlate to the density of the fibrin fibers the gels are composed of. These findings strongly suggest that the microscopic properties of individual fibers in fibrous networks play an essential role in determining cell behavior.  相似文献   

5.
Despite much interest in the extraordinary mechanical properties of silks, the structure of native silk fibers is still not fully understood. In the present study, the morphology, topography, and organization of insect and spider cocoon silks were investigated using a range of imaging methods. Field emission scanning electron microscopy was used to observe transverse and longitude structures in silk fibers subjected to tensile fracturing, freeze fracturing, or polishing. In addition, ultrathin sections of silk brins embedded in resin were examined using transmission electron microscopy. Finally, dry silk brins were examined by confocal microscopy. The results confirmed the existence of well-oriented bundles of nanofibrils in all the silks examined and gave an indication of a hierarchical construction of the brin. Observed separation of the microfibrils in fractured brins suggests that the multifibrillar structure of the silk fiber contributes to toughness by allowing dissipation of energy in the controlled propagation of cracks.  相似文献   

6.
Some properties of alginate gels derived from algal sodium alginate   总被引:1,自引:0,他引:1  
Alginic acid in soluble sodium alginate turns to insoluble gel after contact with divalent metal ions, such as calcium ions. The sodium alginate character has an effect on the alginate gel properties. In order to prepare a suitable calcium alginate gel for use in seawater, the effects of sodium alginate viscosity and M/G ratio (the ratio of D-mannuronate to L-guluronate) on the gel strength were investigated. The wet tensile strengths of gel fibers derived from high viscosity sodium alginate were higher than those from low viscosity sodium alginate. The tensile strength increased with diminishing sodium alginate M/G ratio. Among the gel fibers tested, the gel fiber obtained from a sodium alginate I-5G (1% aqueous solution viscosity = 520 mPa·s, M/G ratio = 0.6) had the highest wet tensile strength. After 13 days treatment in seawater, the wet tensile strength of the gel fiber retained 36% of the original untreated gel strength. For sodium alginates with similar viscosities, the seawater tolerance of low M/G ratio alginate was greater than that of the high M/G ratio one. This study enables us to determine a suitable calcium alginate gel for use in seawater.  相似文献   

7.
目的:研究担载神经生长因子(NGF)的静电纺丝纤维的表征,考察NGF电纺纤维对于周围神经修复的效果。方法:将NGF水溶液分散于PLLA溶液,通过W/O乳液法制备静电纺丝纤维,对纤维的形态、力学性能等进行表征,Elisa方法测定NGF的体外释放动力学,Alamer Blue法检测试剂来考察纤维释放液对于PC12细胞增殖的影响。结果:NGF电纺纤维具备良好的形态和力学性质,直径为500-900 nm,纤维具备三维多孔结构。纤维的最大拉伸应力为2.50±0.41 MPa。电纺纤维中NGF在体外可有效释放9天,累积释放量接近3000 pg。细胞活性实验结果显示,第1、3、5、7天释放液的荧光强度与对照组相比有显著差异。结论:担载NGF的乳液法静电纺丝纤维有促进缺损周围神经修复的潜质。  相似文献   

8.
To exploit the maximum potential of cellulose whiskers (CWs), we report here for the first time the successful fabrication of nanocomposites reinforced with highly oriented CWs in a polymer matrix. The nanocomposites were prepared using polyvinyl alcohol (PVA) and a colloidal suspension of cotton-derived CWs. The macroscopically homogeneous PVA-CW suspensions were extruded into cold methanol to form gel fibers followed by a hot drawing. Compared to the neat PVA fiber, the as-spun fiber containing a small amount of CWs (5 wt % of solid PVA) showed higher drawability, leading to an extremely high orientation of CWs with the matrix PVA. The stress-transfer mechanism, a prime determining factor for high mechanical properties of nanocomposites, was studied by X-ray diffraction. The stress on the incorporated CWs was monitored by applying an in situ nondestructive load to the composite fibers. The applied stress to the whole sample was found to be effectively transferred to the CWs inside the composites, suggesting strong interfacial bonding between the filler and the matrix. Effective stress transfer to the oriented whiskers resulted in outstanding enhancement in mechanical properties of the nanocomposites.  相似文献   

9.
The proteoglycan decorin is known to affect both the fibrillogenesis and the resulting ultrastructure of in vitro polymerized collagen gels. However, little is known about its effects on mechanical properties. In this study, 3D collagen gels were polymerized into tensile test specimens in the presence of decorin proteoglycan, decorin core protein, or dermatan sulfate (DS). Collagen fibrillogenesis, ultrastructure, and mechanical properties were then quantified using a turbidity assay, 2 forms of microscopy (SEM and confocal), and tensile testing. The presence of decorin proteoglycan or core protein decreased the rate and ultimate turbidity during fibrillogenesis and decreased the number of fibril aggregates (fibers) compared to control gels. The addition of decorin and core protein increased the linear modulus by a factor of 2 compared to controls, while the addition of DS reduced the linear modulus by a factor of 3. Adding decorin after fibrillogenesis had no effect, suggesting that decorin must be present during fibrillogenesis to increase the mechanical properties of the resulting gels. These results show that the inclusion of decorin proteoglycan during fibrillogenesis of type I collagen increases the modulus and tensile strength of resulting collagen gels. The increase in mechanical properties when polymerization occurs in the presence of the decorin proteoglycan is due to a reduction in the aggregation of fibrils into larger order structures such as fibers and fiber bundles.  相似文献   

10.
The establishment of phase equilibrium in aqueous gelatin-locust bean gum (LBG) systems in the process of cooling from 313 to 291 K in specific conditions, passes ahead of the gelation process(.) This allows the suggestion that macrostructure and mechanical properties of the system can be predicted on the basis of knowledge of its phase diagram, obtained for the liquid gelatin-LBG systems comprising gelatin molecular aggregates. Textural and rheological analysis of gel-like gelatin-LBG systems demonstrate the effect of two factors determining their mechanical properties and acting opposite each other when the concentration of LBG in the system increases: concentration of gelatin by LBG in the process of phase separation, and decrease in the density of the gel network.  相似文献   

11.
Nature's high‐performance polymer, spider silk, is composed of specific proteins, spidroins, which form solid fibers. So far, fibers made from recombinant spidroins have failed in replicating the extraordinary mechanical properties of the native material. A recombinant miniature spidroin consisting of four poly‐Ala/Gly‐rich tandem repeats and a nonrepetitive C‐terminal domain (4RepCT) can be isolated in physiological buffers and undergoes self assembly into macrofibers. Herein, we have made a first attempt to improve the mechanical properties of 4RepCT fibers by selective introduction of AA → CC mutations and by letting the fibers form under physiologically relevant redox conditions. Introduction of AA → CC mutations in the first poly‐Ala block in the miniature spidroin increases the stiffness and tensile strength without changes in ability to form fibers, or in fiber morphology. These improved mechanical properties correlate with degree of disulfide formation. AA → CC mutations in the forth poly‐Ala block, however, lead to premature aggregation of the protein, possibly due to disulfide bonding with a conserved Cys in the C‐terminal domain. Replacement of this Cys with a Ser, lowers thermal stability but does not interfere with dimerization, fiber morphology or tensile strength. These results show that mutagenesis of 4RepCT can reveal spidroin structure‐activity relationships and generate recombinant fibers with improved mechanical properties.  相似文献   

12.
Structural stability of the extracellular matrix is primarily a consequence of fibrillar collagen and the extent of cross-linking. The relationship between collagen self-assembly, consequent fibrillar shape and mechanical properties remains unclear. Our laboratory developed a model system for the preparation of self-assembled type I collagen fibers with fibrillar substructure mimicking the hierarchical structures of tendon. The present study evaluates the effects of pH and temperature during self-assembly on fibrillar structure, and relates the structural effects of these treatments on the uniaxial tensile mechanical properties of self-assembled collagen fibers. Results of the analysis of fibril diameter distributions and mechanical properties of the fibers formed under the different incubation conditions indicate that fibril diameters grow via the lateral fusion of discrete approximately 4 nm subunits, and that fibril diameter correlates positively with the low strain modulus. Fibril diameter did not correlate with either the ultimate tensile strength or the high strain elastic modulus, which suggests that lateral aggregation and consequently fibril diameter influences mechanical properties during small strain mechanical deformation. We hypothesize that self-assembly is mediated by the formation of fibrillar subunits that laterally and linearly fuse resulting in fibrillar growth. Lateral fusion appears important in generating resistance to deformation at low strain, while linear fusion leading to longer fibrils appears important in the ultimate mechanical properties at high strain.  相似文献   

13.
Ultrafine fibers of cellulose acetate/poly(butyl acrylate) (CA/PBA) composite in which PBA acted as an adhesive and CA acted as a matrix, were successfully prepared as fibrous mat via electrospinning. The morphology observation from the electrospun CA/PBA composite fibers, after treatment with heat hardener, revealed that the fibers were cylindrical and had point-bonded structures. SEM, FT-IR spectra, Raman spectra, TGA analysis, and mechanical properties measurement were used to study the different properties of hybrid mats. The tensile strength of blend fibrous electrospun mats was found to be effectively increased. This resultant enhancement of the mechanical properties of polymer fibrous mats, caused by generating the point-bonded structures (due to adhesive), could increase the number of potential applications of mechanically weak electrospun CA fibers.  相似文献   

14.
The composition and organization of the extracellular matrix (ECM) contribute to the mechanical properties of tissues. The polymerization of fibronectin into the ECM increases actin organization and regulates the composition of the ECM. In this study, we examined the ability of cell-dependent fibronectin matrix polymerization to affect the tensile properties of an established tissue model. Our data indicate that fibronectin polymerization increases the ultimate strength and toughness, but not the stiffness, of collagen biogels. A fragment of fibronectin that stimulates mechanical tension generation by cells, but is not incorporated into ECM fibrils, did not increase the tensile properties, suggesting that changes in actin organization in the absence of fibronectin fibril formation are not sufficient to increase tensile strength. The actin cytoskeleton was needed to initiate the fibronectin-induced increases in the mechanical properties. However, once fibronectin-treated collagen biogels were fully contracted, the actin cytoskeleton no longer contributed to the tensile strength. These data indicate that fibronectin polymerization plays a significant role in determining the mechanical strength of collagen biogels and suggest a novel mechanism by which fibronectin can be used to enhance the mechanical performance of artificial tissue constructs.  相似文献   

15.
The fish scale of Pagrus major has an orthogonal plywood structure of stratified lamellae, 1-2 microm in thickness, consisting of closely packed 70- to 80-nm-diameter collagen fibers. X-ray diffraction, energy-dispersive X-ray analysis, and infrared spectroscopy indicate that the mineral phase in the scale is calcium-deficient hydroxyapatite containing a small amount of sodium and magnesium ions, as well as carbonate anions in phosphate sites of the apatite lattice. The tensile strength of the scale is high (approximately 90 MPa) because of the hierarchically ordered structure of mineralized collagen fibers. Mechanical failure occurs by sliding of the lamellae and associated pulling out and fracture of the collagen fibers. In contrast, demineralized scales have significantly lower tensile strength (36 MPa), indicating that interactions between the apatite crystals and collagen fibers are of fundamental importance in determining the mechanical properties. Thermal treatment of fish scales to remove the organic components produces remarkable inorganic replicas of the native orthogonal plywood structure of the fibrillary plate. The biomimetic replica produced by heating to 873 K consists of stratified porous lamellae of c-axis-aligned apatite crystals that are long, narrow plates, 0.5-0.6 microm in length and 0.1-0.2 microm in width. The textured inorganic material remains intact when heated to 1473 K, although the size of the constituent crystals increases as a result of thermal sintering.  相似文献   

16.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

17.
Cellulose films were prepared by dissolving lyocell fibers in LiCl/N,N-dimethylacetamide solvent and subsequently coagulating and drying them under ambient conditions. To introduce preferred orientation, the films were uniaxially drawn under air-dry and rewetted conditions, respectively. Preferred orientation was determined by birefringence measurements and by wide-angle X-ray scattering. Mechanical properties were characterized by means of tensile tests with films conditioned to standard temperatures and humidity. Drawing resulted in the substantial reorientation of cellulose, whereby the molecular chains in the amorphous regions exhibited clearly stronger reorientation than the crystalline fraction. The average degree of orientation was comparable to orientation achieved in spun cellulose fibers. Wet-drawing resulted in improved tensile strength and modulus of elasticity but reduced elongation at break. The mechanical properties of wet-drawn films are competitive with regard to cellophane and melt-blown cellulose films, particularly considering their high modulus of elasticity of up to 26 GPa, which is also comparable to values obtained for industrially produced cellulose fibers.  相似文献   

18.
Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins.  相似文献   

19.
Acrylic bone cement is significantly weaker and less stiff than compact bone. Bone cement is also weaker in tension than in compression. This limits its use in orthopaedics to areas where tensile stresses are minimum. We have attempted to improve the mechanical properties of PMMA by reinforcing it with metal wires, and graphite and aramid fibers. Normal, carbon fiber reinforced and aramid fiber reinforced bone cement specimens were tested in compression. Addition of a small percentage (1-2% by weight for carbon and up to 6% for aramid) of these fibers improved the mechanical properties significantly. Due to the improved mechanical properties of fiber reinforced bone cement, its clinical use may reduce the incidence of cement fracture and thus loosening of the prosthesis.  相似文献   

20.
M Hudspeth  X Nie  W Chen  R Lewis 《Biomacromolecules》2012,13(8):2240-2246
Spider silks have been shown to have impressive mechanical properties. In order to assess the effect of extension rate, both quasi-static and high-rate tensile properties were determined for single fibers of major (MA) and minor (MI) ampullate single silk from the orb weaving spider Nephila clavipes . Low rate tests have been performed using a DMA Q800 at 10(-3) s(-1), while high rate analysis was done at 1700 s(-1) utilizing a miniature Kolsky bar apparatus. Rate effects exhibited by both respective silk types are addressed, and direct comparison of the tensile response between the two fibers is made. The fibers showed major increases in toughness at the high extension rate. Mechanical properties of these organic silks are contrasted to currently employed ballistic fibers and examination of fiber fracture mechanisms are probed via scanning electron microscope, revealing a globular rupture surface topography for both rate extremums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号