首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Spectrins are key cytoskeleton proteins with roles in membrane integrity, cell morphology, organelle transport and cell polarity of varied cell types during development. Defects in erythroid spectrins in humans result in congenital hemolytic anemias with altered red cell morphology. Although well characterized in mammals and invertebrates, analysis of the structure and function of non-mammalian vertebrate spectrins has been lacking. The zebrafish riesling (ris) suffers from profound anemia, where the developing red cells fail to assume terminally differentiated erythroid morphology. Using comparative genomics, erythroid beta-spectrin (sptb) was identified as the gene mutated in ris. Zebrafish Sptb shares 62.3% overall identity with the human ortholog and phylogenetic comparisons suggest intragenic duplication and divergence during evolution. Unlike the human and murine orthologs, the pleckstrin homology domain of zebrafish Sptb is not removed in red cells by alternative splicing. In addition, apoptosis and abnormal microtubule marginal band aggregation contribute to hemolysis of mutant erythrocytes, which are features not present in mammalian red cells with sptb defects. This study presents the first genetic characterization of a non-mammalian vertebrate sptb and demonstrates novel features of red cell hemolysis in non-mammalian red cells. Further, we propose that the distinct mammalian erythroid morphology may have evolved from specific modifications of Sptb structure and function.  相似文献   

3.
The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK), non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.  相似文献   

4.
Alternative pre-mRNA splicing plays a major role in regulating cell type-specific expression of the protein 4.1 family of skeletal proteins. The biological importance of alternative splicing as a mechanism for 4.1 gene regulation is underscored by studies of the prototypical 4.1R gene in erythroid cells: activation of exon 16 inclusion in mRna at the erythroblast stage greatly enhances the ability of newly synthesized 4.1R protein to bind spectrin and actin, and thus assemble into a stable membrane skeleton. This gain-of- function has profound effects on the biophysical properties of deformability and membrane strength that are critical to red cell survival in the circulation. Another example of developmentally regulated splicing occurs in differentiating mammary epithelial cells in culture, where cell morphogenesis is accompanied by a splicing switch that reversibly activates inclusion of alternative exon muscle. Few other genes are known to be so richly endowed with regulated switches in pre-mRna splicing making the 4.1R gene an interesting paradigm for the role of alternative splicing as a mediator of cell function. Recent evidence that other members of the 4.1 gene family are also regulated by alternative splicing suggests, moreover, that this phenomenon is of general importance in regulating the structure of this class of skeletal proteins.  相似文献   

5.
The synthesis of membrane skeletal proteins in avian nucleated red cells has been the subject of extensive investigation, whereas little is known about skeletal protein synthesis in bone marrow erythroblasts and peripheral blood reticulocytes in mammals. To address this question, we have isolated nucleated red cell precursors and reticulocytes from spleens and from the peripheral blood, respectively, of rats with phenylhydrazine-induced hemolytic anemia and pulse-labeled them with [35S]methionine. Pulse-labeling of nucleated red cell precursors shows that the newly synthesized alpha- and beta-spectrins are present in the cytosol, with a severalfold excess of alpha-spectrin over beta-spectrin. However, in the membrane-skeletal fraction, newly synthesized alpha- and beta-spectrins are assembled in stoichiometric amounts, suggesting that the association of alpha-spectrin with the membrane skeleton may be rate-limited by the amount of beta-spectrin synthesized, as has been shown recently in avian erythroid cells (Blikstad, I., W. J. Nelson, R. T. Moon, and E. Lazarides, 1983. Cell, 32:1081-1091). Pulse-chase experiments in the rat nucleated red cell precursors show that the newly synthesized alpha- and beta-spectrin of the cytosol turn over coordinately and extremely rapidly. In contrast, in the membrane-skeletal fraction, the newly synthesized polypeptides of spectrin are stable. In contrast to nucleated erythroid cells, in reticulocytes the synthesis of alpha- and beta-spectrins is markedly diminished compared with the synthesis and assembly of proteins comigrating with bands 2.1 and 4.1 on SDS gels. Thus, in nucleated red cell precursors, the newly synthesized spectrin may be attached to the plasma membrane before proteins 2.1 and 4.1 are completely synthesized and incorporated in the membrane.  相似文献   

6.
The mechanical properties of vertebrate erythrocytes depend on their cytoskeletal protein networks. Membrane skeleton proteins spectrin and protein 4.1 (4.1R) cross-link with actin to maintain membrane stability under mechanical stress. Phosphorylation of 4.1R alters the affinity of 4.1R for spectrin–actin binding and this modulates the mechanical properties of human erythrocytes. In this study, phorbol 12-myristate-13-acetate (PMA)-induced phosphorylation of 4.1R was tested, erythrocyte deformability was determined and the erythrocyte elastic modulus was detected in human, chick, frog and fish. Furthermore, amino acid sequences of the functionally important domains of 4.1R were analyzed. Results showed that PMA-induced phosphorylation of 4.1R decreased erythrocyte deformability and this property was stable after 1 h. The values of Young’s modulus alteration gradually decreased from human to fish (0.388±0.035 kPa, 0.219±0.022 kPa, 0.191±0.036 kPa and 0.141±0.007 kPa). Ser-312 and Ser-331 are located within the consensus sequence recognized by protein kinase C (PKC); however, Ser-331 in zebrafish was replaced by Ala-331. The sequence of the 8 aa motif from vertebrate 4.1R showed only one amino acid mutation in frog and numerous substitutions in fish. Analyses of Young’s modulus suggested that the interaction between 4.1R with the spectrin–actin binding domain may have a special relationship with the development of erythrocyte deformability. In addition, amino acid mutations in 4.1R further supported this relationship. Thus, we hypothesize that alteration of membrane skeleton protein binding affinity may play a potential role in the development of erythrocyte deformability, and alteration of Young’s modulus values may provide a method for determining the deformability development of vertebrate erythrocytes.  相似文献   

7.
The erythrocyte deformability of 28 patients with anemia was evaluated with the laser-assisted optical rotational cell analyzer (LORCA), an image analyzer that converts into numerical form the degree of refraction of a laser beam induced by red cells subjected to a range of torsional stresses. The patients were 10 thalassemics, including three with intermediate forms (1 HbC/beta degree, 1 homozygote beta for Orkin's haplotype VI, 1 beta degree/beta delta Sicilian type) and seven heteroygotes for beta Th; six with hereditary spherocytosis (including 2 with structural alteration of the spectrin beta chain); three with type II congenital dyserythropoietic anemia (HEMPAS), two hemizygotes and one heterozygote for G-6PD deficiency, and six with severe hypochromic hyposideremic anemia. Red cell deformability was reduced in intermediate thalassemia, hereditary spherocytosis and HEMPAS, normal in heterozygous beta thalassemia and G-6PD deficiency, and increased in hypochromic hyposideremic anemia. These results show that erythrocyte deformability can be impaired by an Hb chain imbalance, membrane and cyto skeleton structure anomalies and changes in the red cell area/volume ratio.  相似文献   

8.
9.
The skeletal protein network of the red blood cell is thought to be important in regulating such membrane functions as deformability and stability. In the present study, we measured membrane deformability and stability of the resealed ghosts using an ektacytometer, a laser diffraction method, and identified the functional role of protein 4.1 and that of Ca2+ and calmodulin in maintaining membrane stability. To obtain direct evidence for a crucial role of protein 4.1 in maintaining membrane stability, we reconstituted protein 4.1-deficient membranes with purified protein 4.1. Although native membranes deficient in protein 4.1 had marked reduction in membrane stability, reconstitution with increasing concentrations of purified protein 4.1 resulted in progressive restoration of membrane stability, providing direct evidence that protein 4.1 is essential for normal membrane stability. To determine if Ca2+ and calmodulin could modulate membrane properties, we measured membrane stability and deformability of resealed ghosts prepared in the presence of varying concentrations of Ca2+ and physiologic concentrations of calmodulin. Our data show that Ca2+ concentrations in the range of 1 to 100 microM can markedly decrease membrane stability only in the presence of calmodulin, but not in its absence. In contrast, deformability decreased only at Ca2+ concentrations higher than 100 microM, and calmodulin had no effect. Examination of the the effects of Ca2+ and calmodulin on various membrane protein interactions has enabled us to suggest that the observed changes in membrane stability may be partly related to the effects of Ca2+ and calmodulin on spectrin-protein 4.1-actin interaction.  相似文献   

10.
The erythrocyte membrane skeleton is composed of the number of proteins isolated and characterized. One of the major proteins of cytoskeleton is actin presented in erythrocytes in the form of short protofilaments. This review will focus on the manner of attachment of actin protofilaments to the red cell membrane, and on the relationships between skeleton membrane proteins. Membrane skeleton proteins in erythrocytes are not unique. Recently a lot of proteins similar to the red cell membrane skeleton proteins were found in a wide variety of non-erythroid cells. This fact gives the opportunity to suppose the existence of a unique protein system in erythroid and non-erythroid cells which provides the attachment of actin filaments to cell membranes and which might be the centre for the assembling of actin structures in the cortical cytoplasm.  相似文献   

11.
Erythroid spectrin is the main component of the red cell membrane skeleton, which is very important in determining the shape, resistance to mechanical stresses and deformability of red cells. Previously we demonstrated that human erythroid alpha-spectrin is ubiquitinated in vitro and in vivo, and using recombinant peptides we identified on repeat 17 the main ubiquitination site of alpha-spectrin. In order to identify the lysine(s) involved in the ubiquitination process, in the present study we mutated the lysines by site-directed mutagenesis. We found that ubiquitination was dramatically inhibited in peptides carrying the mutation of lysine 27 on repeat 17 (mutants K25,27R and K27R). We also demonstrated that the correct folding of this protein is fundamental for its recognition by the ubiquitin conjugating system. Furthermore, the region flanking lysine 27 showed a 75% similarity with the leucine zipper pattern present in many regulatory proteins. Thus, a new potential ubiquitin recognition motif was identified in alpha-spectrin and may be present in several other proteins.  相似文献   

12.
Erythrocyte membrane mechanical function is regulated by the spectrin-based membrane skeleton composed of alpha- and beta-spectrin, actin, protein 4.1R (4.1R), and adducin. Post-translational modifications of these proteins have been suggested to modulate membrane mechanical function. Indeed, beta-spectrin phosphorylation by casein kinase I has been shown to decrease membrane mechanical stability. However, the effects of the phosphorylation of skeletal proteins by protein kinase C (PKC), a serine/threonine kinase, have not been elucidated. In the present study, we explored the functional consequences of the phosphorylation of 4.1R and adducin by PKC. We identified Ser-312 in 4.1R as the PKC phosphorylation site. Using antibodies raised against phosphopeptides of 4.1R and adducin, we documented significant differences in the time course of phosphorylation of adducin and 4.1R by PKC. Although adducin was phosphorylated rapidly by the activation of membrane-bound atypical PKC by phorbol 12-myristate 13-acetate stimulation, there was a significant delay in the phosphorylation of 4.1R because of delayed recruitment of conventional PKC from cytosol to the membrane. This differential time course in the phosphorylation of 4.1R and adducin in conjunction with membrane mechanical stability measurements enabled us to document that, although phosphorylation of adducin by PKC has little effect on membrane mechanical stability, additional phosphorylation of 4.1R results in a marked decrease in membrane mechanical stability. We further showed that the phosphorylation of 4.1R by PKC results in its decreased ability to form a ternary complex with spectrin and actin as well as dissociation of glycophorin C from the membrane skeleton. These findings have enabled us to define a regulatory role for 4.1R phosphorylation in dynamic regulation of red cell membrane properties.  相似文献   

13.
14.
Hereditary spherocytosis (HS) is a common inherited hemolytic anemia caused by mutations in erythrocyte proteins including the anion exchanger, AE1 (band 3). This study examined seven missense mutations (L707P, R760Q, R760W, R808C, H834P, T837M, and R870W) located in the membrane domain of the human AE1 that are associated with this disease. The HS mutants, constructed in full-length AE1 cDNA, could be transiently expressed to similar levels in HEK 293 cells. Immunofluorescence, cell surface biotinylation, and pulse chase labeling showed that the HS mutants all exhibited defective cellular trafficking from the endoplasmic reticulum to the plasma membrane. Impaired binding to an inhibitor affinity matrix indicated that the mutant proteins had non-native structures and may be misfolded. Further characterization of the HS R760Q mutant showed no change in its oligomeric structure or turnover (half-life=15 h) compared to wild-type AE1, suggesting the mutant was not aggregated or targeted for rapid degradation via the proteasome. Intracellular retention of HS mutant AE1 would lead to destruction of the protein during erythroid development and would account for the lack of HS mutant AE1 in the plasma membrane of the mature red cell.  相似文献   

15.
16.
Iron is a crucial metal for normal development, being required for the production of heme, which is incorporated into cytochromes and hemoglobin. The zebrafish chianti (cia) mutant manifests a hypochromic, microcytic anemia after the onset of embryonic circulation, indicative of a perturbation in red blood cell hemoglobin production. We show that cia encodes tfr1a, which is specifically expressed in the developing blood and requisite only for iron uptake in erythroid precursors. In the process of isolating zebrafish tfr1, we discovered two tfr1-like genes (tfr1a and tfr1b) and a single tfr2 ortholog. Abrogation of tfr1b function using antisense morpholinos revealed that this paralog was dispensable for hemoglobin production in red cells. tfr1b morphants exhibited growth retardation and brain necrosis, similar to the central nervous system defects observed in the Tfr1 null mouse, indicating that tfr1b is probably used by non-erythroid tissues for iron acquisition. Overexpression of mouse Tfr1, mouse Tfr2, and zebrafish tfr1b partially rescued hypochromia in cia embryos, establishing that each of these transferrin receptors are capable of supporting iron uptake for hemoglobin production in vivo. Taken together, these data show that zebrafish tfr1a and tfr1b share biochemical function but have restricted domains of tissue expression, and establish a genetic model to study the specific function of Tfr1 in erythroid cells.  相似文献   

17.
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.  相似文献   

18.
The three adducin proteins (α, β, and γ) share extensive sequence, structural, and functional homology. Heterodimers of α‐ and β‐adducin are vital components of the red cell membrane skeleton, which is required to maintain red cell elasticity and structural integrity. In addition to anemia, targeted deletion of the α‐adducin gene (Add1) reveals unexpected, strain‐dependentnon‐erythroid phenotypes. On an inbred 129 genetic background, Add1 null mice show abnormal inward curvature of the cervicothoracic spine with complete penetrance. More surprisingly, a subset of 129‐Add1 null mice develop severe megaesophagus, while examination of peripheral nerves reveals a reduced number of axons in 129‐Add1 null mice at four months of age. These unforeseen phenotypes, described here, reveal new functions for adducin and provide new models of mammalian disease. genesis 50:882–891, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In red blood cells, protein 4.1 (4.1R) is an 80-kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane. The picture is more complex in nucleated cells, in which many 4.1R isoforms, varying in size and intracellular location, have been identified. To contribute to the characterization of signals involved in differential intracellular localization of 4.1R, we have analyzed the role the exon 5-encoded sequence plays in 4.1R distribution. We show that exon 5 encodes a leucine-rich sequence that shares key features with nuclear export signals (NESs). This sequence adopts the topology employed for NESs of other proteins and conserves two hydrophobic residues that are shown to be critical for NES function. A 4.1R isoform expressing the leucine-rich sequence binds to the export receptor CRM1 in a RanGTP-dependent fashion, whereas this does not occur in a mutant whose two conserved hydrophobic residues are substituted. These two residues are also essential for 4.1R intracellular distribution, because the 4.1R protein containing the leucine-rich sequence localizes in the cytoplasm, whereas the mutant protein predominantly accumulates in the nucleus. We hypothesize that the leucine-rich sequence in 4.1R controls distribution and concomitantly function of a specific set of 4.1R isoforms.  相似文献   

20.
Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1–/–; Shi TS et al. J Clin Invest 103: 331, 1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1–/– mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1–/– erythrocytes was markedly activated by exposure to hypertonic conditions (18.2 ± 3.2 in 4.1–/– vs. 9.8 ± 1.3 mmol/1013 cell x h in control mice), with an abnormal dependence on osmolality (EC50 = 417 ± 42 in 4.1–/– vs. 460 ± 35 mosmol/kgH2O in control mice), suggestive of an upregulated functional state. While the affinity for internal protons was not altered (K0.5 = 489.7 ± 0.7 vs. 537.0 ± 0.56 nM in control mice), the Vmax of the H-induced Na/H exchange activity was markedly elevated in 4.1–/– erythrocytes (Vmax 91.47 ± 7.2 compared with 46.52 ± 5.4 mmol/1013 cell x h in control mice). Na/H exchange activation by okadaic acid was absent in 4.1–/– erythrocytes. Altogether, these results suggest that erythroid protein 4.1 plays a major role in volume regulation and physiologically downregulates Na/H exchange in mouse erythrocytes. Upregulation of the Na/H exchange is an important contributor to the elevated cell Na content of 4.1–/– erythrocytes. spherocytosis; cell Na; Na/H exchange  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号