首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previous models, the Drosophila melanogaster CIT-K orthologue Sticky (Sti) does not require interaction with RhoA to localize to the cleavage site. Instead, RhoA fails to form a compact ring in late cytokinesis after Sti depletion, and this function requires Sti kinase activity. Moreover, we found that the Sti Citron-Nik1 homology domain interacts with RhoA regardless of its status, indicating that Sti is not a canonical RhoA effector. Finally, Sti depletion caused an increase of phosphorylated myosin regulatory light chain at the cleavage site in late cytokinesis. We propose that Sti/CIT-K maintains correct RhoA localization at the cleavage site, which is necessary for proper RhoA activity and contractile ring dynamics.  相似文献   

2.
The contractile ring is a highly dynamic structure, but how this dynamism is accomplished remains unclear. Here, we report the identification and analysis of a novel Drosophila gene, sticky (sti), essential for cytokinesis in all fly proliferating tissues. sti encodes the Drosophila orthologue of the mammalian Citron kinase. RNA interference-mediated silencing of sti in cultured cells causes them to become multinucleate. Components of the contractile ring and central spindle are recruited normally in such STICKY-depleted cells that nevertheless display asymmetric furrowing and aberrant blebbing. Together with an unusual distribution of F-actin and Anillin, these phenotypes are consistent with defective organization of the contractile ring. sti shows opposite genetic interactions with Rho and Rac genes suggesting that these GTPases antagonistically regulate STICKY functions. Similar genetic evidence indicates that RacGAP50C inhibits Rac during cytokinesis. We discuss that antagonism between Rho and Rac pathways may control contractile ring dynamics during cytokinesis.  相似文献   

3.
The small GTPase RhoA plays a crucial role in the different stages of cytokinesis, including contractile ring formation, cleavage furrow ingression, and midbody abscission. Citron kinase (CIT-K), a protein required for cytokinesis and conserved from insects to mammals, is currently considered a cytokinesis-specific effector of active RhoA. In agreement with previous observations, we show here that, as in Drosophila cells, CIT-K is specifically required for abscission in mammalian cells. However, in contrast with the current view, we provide evidence that CIT-K is an upstream regulator rather than a downstream effector of RhoA during late cytokinesis. In addition, we show that CIT-K is capable of physically and functionally interacting with the actin-binding protein anillin. Active RhoA and anillin are displaced from the midbody in CIT-K-depleted cells, while only anillin, but not CIT-K, is affected if RhoA is inactivated in late cytokinesis. The overexpression of CIT-K and of anillin leads to abscission delay. However, the delay produced by CIT-K overexpression can be reversed by RhoA inactivation, while the delay produced by anillin overexpression is RhoA-independent. Altogether, these results indicate that CIT-K is a crucial abscission regulator that may promote midbody stability through active RhoA and anillin.  相似文献   

4.
Cytokinesis requires the spatio-temporal coordination of cell-cycle control and cytoskeletal reorganization. Members of the Rho-family of GTPases are crucial regulators of this process and assembly of the contractile ring depends on local activation of Rho signalling. Here, we show that the armadillo protein p0071, unlike its relative p120(ctn), is localized at the midbody during cytokinesis and is essential for cell division. Both knockdown and overexpression of p0071 interfered with normal cell growth and survival due to cytokinesis defects with formation of multinucleated cells and induction of apoptosis. This failure of cytokinesis seemingly correlated with the deregulation of Rho activity in response to altered p0071 expression. The function of p0071 in regulating Rho activity occurred through an association of p0071 with RhoA, as well as the physical and functional interaction of p0071 with Ect2, the one Rho guanine-nucleotide exchange factor (GEF) essential for cytokinesis. These findings support an essential role for p0071 in spatially regulating restricted Rho signalling during cytokinesis.  相似文献   

5.
Citron kinase is a Rho-effector protein kinase that is related to Rho-associated kinases of ROCK/ROK/Rho-kinase family. Both ROCK and citron kinase are suggested to play a role in cytokinesis. However, no substrates are known for citron kinase. We found that citron kinase phosphorylated regulatory light chain (MLC) of myosin II at both Ser-19 and Thr-18 in vitro. Unlike ROCK, however, citron kinase did not phosphorylate the myosin binding subunit of myosin phosphatase, indicating that it does not inhibit myosin phosphatase. We found that the expression of the kinase domain of citron kinase resulted in an increase in MLC di-phosphorylation. Furthermore, the kinase domain was able to increase di-phosphorylation and restore stress fiber assembly even when ROCK was inhibited with a specific inhibitor, Y-27632. The expression of full-length citron kinase also increased di-phosphorylation during cytokinesis. These observations suggest that citron kinase phosphorylates MLC to generate di-phosphorylated MLC in vivo. Although both mono- and di-phosphorylated MLC were found in cleavage furrows, di-phosphorylated MLC showed more constrained localization than did mono-phosphorylated MLC. Because citron kinase is localized in cleavage furrows, citron kinase may be involved in regulating di-phosphorylation of MLC during cytokinesis.  相似文献   

6.
Dynamic regulation of cytoskeletal contractility through phosphorylation of the nonmuscle Myosin-II regulatory light chain (MRLC) provides an essential source of tension for shaping epithelial tissues. Rho GTPase and its effector kinase ROCK have been implicated in regulating MRLC phosphorylation in vivo, but evidence suggests that other mechanisms must be involved. Here, we report the identification of a single Drosophila homologue of the Death-associated protein kinase (DAPK) family, called Drak, as a regulator of MRLC phosphorylation. Based on analysis of null mutants, we find that Drak broadly promotes proper morphogenesis of epithelial tissues during development. Drak activity is largely redundant with that of the Drosophila ROCK orthologue, Rok, such that it is essential only when Rok levels are reduced. We demonstrate that these two kinases synergistically promote phosphorylation of Spaghetti squash (Sqh), the Drosophila MRLC orthologue, in vivo. The lethality of drak/rok mutants can be rescued by restoring Sqh activity, indicating that Sqh is the critical common effector of these two kinases. These results provide the first evidence that DAPK family kinases regulate actin dynamics in vivo and identify Drak as a novel component of the signaling networks that shape epithelial tissues.  相似文献   

7.
Several G proteins of the Rho family have been shown to be required for cytokinesis. The activity of these proteins is regulated by GTP exchange factors (GEFs), which stimulate GDP/GTP exchange, and by GTPase activating proteins (GAPs), which suppress activity by stimulating the intrinsic GTPase activity. The role of Rho family members during cytokinesis is likely to be determined by their spatial and temporal interactions with these factors. Here we focus on the role of the pebble (pbl) gene of Drosophila melanogaster, a RhoGEF that is required for cytokinesis. We summarise the evidence that the primary target of PBL is Rho1 and describe genetic approaches to elucidating the function of PBL and identifying other components of the PBL-activated Rho signalling pathway.  相似文献   

8.
Rho family GTPases play pivotal roles in cytokinesis. By using probes based on the principle of fluorescence resonance energy transfer (FRET), we have shown that in HeLa cells RhoA activity increases with the progression of cytokinesis. Here we show that in Rat1A cells RhoA activity remained suppressed during most of the cytokinesis. Consistent with this observation, the expression of C3 toxin inhibited cytokinesis in HeLa cells but not in Rat1A cells. Furthermore, the expression of a dominant negative mutant of Ect2, a Rho GEF, or Y-27632, an inhibitor of the Rho-dependent kinase ROCK, inhibited cytokinesis in HeLa cells but not in Rat1A cells. In contrast to the activity of RhoA, the activity of Rac1 was suppressed during cytokinesis and started increasing at the plasma membrane of polar sides before the abscission of the daughter cells in both HeLa and Rat1A cells. This type of Rac1 suppression was shown to be essential for cytokinesis because a constitutively active mutant of Rac1 induced a multinucleated phenotype in both HeLa and Rat1A cells. Moreover, the involvement of MgcRacGAP/CYK-4 in this suppression of Rac1 during cytokinesis was shown by the use of a dominant negative mutant. Because ML-7, an inhibitor of myosin light chain kinase, delayed the cytokinesis of Rat1A cells and because Pak, a Rac1 effector, is known to suppress myosin light chain kinase, the suppression of the Rac1-Pak pathway by MgcRacGAP may play a pivotal role in the cytokinesis of Rat1A cells.  相似文献   

9.
The final stages in mammalian cytokinesis are poorly understood. Previously, we reported that the ADP-ribosyltransferase activity of Pseudomonas aeruginosa type III secreted toxin ExoT inhibits late stages of cytokinesis. Given that Crk adaptor proteins are the major substrates of ExoT ADP-ribosyltransferase activity, we tested the involvement of Crk in cytokinesis. We report that the focal adhesion-associated proteins, Crk and paxillin are essential for completion of cytokinesis. When their function is absent, the cytoplasmic bridge fails to resolve and the daughter cells fuse to form a binucleated cell. During cytokinesis, Crk is required for syntaxin-2 recruitment to the midbody, while paxillin is required for both Crk and syntaxin-2 localization to this compartment. Our data demonstrate that the subcellular localization and the activity of RhoA and citron K, which are essential for early stages of cytokinesis, are not dependent on paxillin, Crk, or syntaxin-2. These studies reveal a novel role for Crk and paxillin in cytokinesis and suggest that focal adhesion complex, as a unit, may partake in this fundamental cellular process.  相似文献   

10.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.  相似文献   

11.
Ng J  Luo L 《Neuron》2004,44(5):779-793
Rho GTPases are essential regulators of cytoskeletal reorganization, but how they do so during neuronal morphogenesis in vivo is poorly understood. Here we show that the actin depolymerization factor cofilin is essential for axon growth in Drosophila neurons. Cofilin function in axon growth is inhibited by LIM kinase and activated by Slingshot phosphatase. Dephosphorylating cofilin appears to be the major function of Slingshot in regulating axon growth in vivo. Genetic data provide evidence that Rho or Rac/Cdc42, via effector kinases Rok or Pak, respectively, activate LIM kinase to inhibit axon growth. Importantly, Rac also activates a Pak-independent pathway that promotes axon growth, and different RacGEFs regulate these distinct pathways. These genetic analyses reveal convergent and divergent pathways from Rho GTPases to the cytoskeleton during axon growth in vivo and suggest that different developmental outcomes could be achieved by biases in pathway selection.  相似文献   

12.
Rho small GTPase regulates cell morphology, adhesion and cytokinesis through the actin cytoskeleton. We have identified a protein, p140mDia, as a downstream effector of Rho. It is a mammalian homolog of Drosophila diaphanous, a protein required for cytokinesis, and belongs to a family of formin-related proteins containing repetitive polyproline stretches. p140mDia binds selectively to the GTP-bound form of Rho and also binds to profilin. p140mDia, profilin and RhoA are co-localized in the spreading lamellae of cultured fibroblasts. They are also co-localized in membrane ruffles of phorbol ester-stimulated sMDCK2 cells, which extend these structures in a Rho-dependent manner. The three proteins are recruited around phagocytic cups induced by fibronectin-coated beads. Their recruitment is not induced after Rho is inactivated by microinjection of botulinum C3 exoenzyme. Overexpression of p140mDia in COS-7 cells induced homogeneous actin filament formation. These results suggest that Rho regulates actin polymerization by targeting profilin via p140mDia beneath the specific plasma membranes.  相似文献   

13.
Plasma membrane ingression during cytokinesis involves both actin remodeling and vesicle-mediated membrane addition. Vesicle-based membrane delivery from the recycling endosome (RE) has an essential but ill-defined involvement in cytokinesis. In the Drosophila melanogaster early embryo, Nuf (Nuclear fallout), a Rab11 effector which is essential for RE function, is required for F-actin and membrane integrity during furrow ingression. We find that in nuf mutant embryos, an initial loss of F-actin at the furrow is followed by loss of the associated furrow membrane. Wild-type embryos treated with Latrunculin A or Rho inhibitor display similar defects. Drug- or Rho-GTP-induced increase of actin polymerization or genetically mediated decrease of actin depolymerization suppresses the nuf mutant F-actin and membrane defects. We also find that RhoGEF2 does not properly localize at the furrow in nuf mutant embryos and that RhoGEF2-Rho1 pathway components show strong specific genetic interactions with Nuf. We propose a model in which RE-derived vesicles promote furrow integrity by regulating the rate of actin polymerization through the RhoGEF2-Rho1 pathway.  相似文献   

14.
Sweeney SJ  Campbell P  Bosco G 《Genetics》2008,178(3):1311-1325
The sticky/citron kinase protein is a conserved regulator of cell-cycle progression from invertebrates to humans. While this kinase is essential for completion of cytokinesis, sticky/citron kinase phenotypes disrupting neurogenesis and cell differentiation suggest additional non-cell-cycle functions. However, it is not known whether these phenotypes are an indirect consequence of sticky mutant cell-cycle defects or whether they define a novel function for this kinase. We have isolated a temperature-sensitive allele of the Drosophila sticky gene and we show that sticky/citron kinase is required for histone H3-K9 methylation, HP1 localization, and heterochromatin-mediated gene silencing. sticky genetically interacts with Argonaute 1 and sticky mutants exhibit context-dependent Su(var) and E(var) activity. These observations indicate that sticky/citron kinase functions to regulate both actin-myosin-mediated cytokinesis and epigenetic gene silencing, possibly linking cell-cycle progression to heterochromatin assembly and inheritance of gene expression states.  相似文献   

15.
BACKGROUND: Animal cell cytokinesis is characterized by a sequence of dramatic cortical rearrangements. How these are coordinated and coupled with mitosis is largely unknown. To explore the initiation of cytokinesis, we focused on the earliest cell shape change, cell elongation, which occurs during anaphase B and prior to cytokinetic furrowing. RESULTS: Using RNAi and live video microscopy in Drosophila S2 cells, we implicate Rho-kinase (Rok) and myosin II in anaphase cell elongation. rok RNAi decreased equatorial myosin II recruitment, prevented cell elongation, and caused a remarkable spindle defect where the spindle poles collided with an unyielding cell cortex and the interpolar microtubules buckled outward as they continued to extend. Disruption of the actin cytoskeleton with Latrunculin A, which abolishes cortical rigidity, suppressed the spindle defect. rok RNAi also affected furrowing, which was delayed and slowed, sometimes distorted, and in severe cases blocked altogether. Codepletion of the myosin binding subunit (Mbs) of myosin phosphatase, an antagonist of myosin II activation, only partially suppressed the cell-elongation defect and the furrowing delay, but prevented cytokinesis failures induced by prolonged rok RNAi. The marked sensitivity of cell elongation to Rok depletion was highlighted by RNAi to other genes in the Rho pathway, such as pebble, racGAP50C, and diaphanous, which had profound effects on furrowing but lesser effects on elongation. CONCLUSIONS: We show that cortical changes underlying cell elongation are more sensitive to depletion of Rok and myosin II, in comparison to other regulators of cytokinesis, and suggest that a distinct regulatory pathway promotes cell elongation.  相似文献   

16.
The mechanisms underlying completion of cytokinesis are still poorly understood. Here, we show that the Drosophila orthologue of mammalian Citron kinases is essential for the final events of the cytokinetic process. Flies bearing mutations in the Drosophila citron kinase (dck) gene were defective in both neuroblast and spermatocyte cytokinesis. In both cell types, early cytokinetic events such as central spindle assembly and contractile ring formation were completely normal. Moreover, cytokinetic rings constricted normally, leading to complete furrow ingression. However late telophases of both cell types displayed persistent midbodies associated with disorganized F actin and anillin structures. Similar defects were observed in dck RNA interference (RNAi) telophases, which, in addition to abnormal F actin and anillin rings, also displayed aberrant membrane protrusions at the cleavage site. Together, these results indicate that mutations in the dck gene result in morphologically abnormal intercellular bridges and in delayed resolution of these structures, suggesting that the wild-type function of dck is required for abscission at the end of cytokinesis. The phenotype of Dck-depleted cells is different from those observed in most Drosophila cytokinesis mutants but extraordinarily similar to that caused by anillin RNAi, suggesting that Dck and anillin are in the same pathway for completion of cytokinesis.  相似文献   

17.
18.
19.
Rho GTPase is a master regulator controlling cytoskeleton in multiple contexts such as cell migration, adhesion and cytokinesis. Of several Rho GTPases in mammals, the best characterized is the Rho subfamily including ubiquitously expressed RhoA and its homologs RhoB and RhoC. Upon binding GTP, Rho exerts its functions through downstream Rho effectors, such as ROCK, mDia, Citron, PKN, Rhophilin and Rhotekin. Until recently, our knowledge about functions of Rho and Rho effectors came mostly from in vitro studies utilizing cultured cells, and their physiological roles in vivo were largely unknown. However, gene-targeting studies of Rho and its effectors have now unraveled their tissue- and cell-specific roles and provide deeper insight into the physiological function of Rho signaling in vivo. In this article, we briefly describe previous studies of the function of Rho and its effectors in vitro and then review and discuss recent studies on knockout mice of Rho and its effectors.  相似文献   

20.
In our recent studies, we defined a critical role for increased levels of myosin light chain (MLC) phosphorylation, a regulatory event in the interaction between actin and myosin in TNF-alpha-induced pulmonary endothelial cell actomyosin rearrangement and apoptosis. The Rho GTPase effector, Rho kinase is an important signaling effector governing levels of MLC phosphorylation which contributes to plasma membrane blebbing in several models of apoptosis. In this study, we directly assessed the role of Rho kinase in TNF-alpha-induced endothelial cell microfilament rearrangement and apoptosis. Inhibition of RhoA GTPase activity by the overexpression of dominant negative RhoA attenuates TNF-alpha-triggered stress fiber formation, consistent with Rho activation as a key event in TNF-alpha-induced cytoskeletal rearrangement. Furthermore, pharmacologic inhibition of Rho kinase as well as dominant negative RhoA overexpression dramatically reduced TNF-alpha-induced bovine endothelial apoptosis reflected by nucleosomal fragmentation as well as caspase 7, 3, and 8 activation. These results indicate that Rho kinase-dependent cytoskeletal rearrangement is critical for early apoptotic events, possibly in the assembly of the death-inducing signaling complex leading to initiator and effector caspase activation, and suggest a novel role for Rho GTPases in endothelial cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号