首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[背景]解脂耶罗维亚酵母属于产油微生物,大量研究表明该酵母能够高产长链脂肪酸和油脂,但是应用该酵母合成超长链脂肪酸仍待研究。[目的]工程化解脂耶罗维亚酵母合成高值超长链脂肪酸,并研究温度对脂肪酸合成的影响。[方法]合成密码子优化的拟南芥(Arabidopsis thaliana)延长酶基因AtFAE1、非洲芥菜(Brassica tournefortii)延长酶基因BtFAE1和碎米芥属植物Cardamine graeca的延长酶基因CgKCS,分别构建质粒pYLEX1-AtFAE1、pYLEX1-BtFAE1、pYLEX1-CgKCS和pYLEX1-AtFAE1-BtFAE1-CgKCS。以解脂耶罗维亚酵母菌株Po1g为宿主,通过化学法分别转化上述4个质粒,获得工程菌Po1g-AtFAE1、Po1g-BtFAE1、Po1g-CgKCS和Po1g-AtFAE1-BtFAE1-CgKCS,比较评价超长链脂肪酸的合成。在此基础上,过表达内源二酯酰甘油酰基转移酶基因DGAT1(diacylglycerol acyltransferase)提高产油量,并研究温度对生物量、产油、脂肪酸组成的影响...  相似文献   

2.
The present study deals with the composition of superior fatty acids of total lipids, polar lipids, and neutral lipids from dried biomass of Candida lipolytica grown by industrial process ("Toprina") on n-alkanes (C10-C20) extracted from petroleum. The data related to our knowledge about yeast and Candida lipolytica, lead to the conclusion that fatty acids feature of "Toprina" are similar to the Candida lipolytica ones grown in batch culture at the same conditions. In addition, a possible physiologic role of 17:1 and 17:2 is considered, in the perspective of the utilization of "Toprina" in animal food.  相似文献   

3.
4.
Endogeneous fatty acid biosynthesis in the two yeast species, Saccharomyces cerevisiae and Candida lipolytica is completely repressed by the addition of long-chain fatty acids to the growth medium. In Candida lipolytica, this repression is accompanied by a corresponding loss of fatty acid synthetase activity in the cell homogenate, when the cells were grown on fatty acids as the sole carbon source. The activity of the Saccharomyces cerevisiae fatty acid synthetase, however, remains unaffected by the addition of fatty acids to a glucose-containing growth medium. From fatty-acid-grown Candida lipolytica cells no fatty acid synthetase complex can be isolated, nor is there any immunologically cross-reacting fatty acid synthetase protein detectable in the crude cell extract. From this it is concluded that Candida lipolytica, but not Saccharomyces cerevisiae, is able to adapt to the growth on fatty acids either by repression of fatty acid synthetase biosynthesis or by a fatty-acid-induced proteolytic degradation of the multienzyme complex. Similarly, the fatty acid synthetase complex disappears rapidly from stationary phase Candida lipolytica cells even after growth in fatty-acid-free medium. Finally, it was found that the fatty acid synthetase complexes from Saccharomyces cerevisiae and Candida lipolytica, though very similar in size and subunit composition, were immunologically different and had no common antigenic determinants.  相似文献   

5.
6.
7.
2,4-Dienoyl-CoA reductase has been purified to homogeneity from Candida lipolytica cultivated in the presence of linoleic acid. The native enzyme had a molecular weight close to 360,000 as estimated by gel filtration on Sepharose CL-4B, whereas the subunit molecular weight estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 33,000. The purified 2,4-dienoyl-CoA reductase from C. lipolytica gave a single precipitin line with antibodies raised against the purified enzyme from C. lipolytica. The general properties of the 2,4-dienyl-CoA reductase from C. lipolytica were examined. The enzyme had optimal pH at 6.5 and was inactivated by heat treatment at 50 degrees C for 10 min. trans-2,trans-4-Octadienoyl-CoA was the most active substrate of the dienoyl-CoA esters examined.  相似文献   

8.
Mating Responses in Candida lipolytica   总被引:1,自引:1,他引:0  
Culture medium that restricted cell multiplication increased fertility in selected heterothallic stocks of Candida lipolytica and triggered sporulation in newly formed diploids; a medium that supported vigorous cell growth prevented sporulation and permitted the newly formed diploids to bud.  相似文献   

9.
The effects of oils with different amounts of n6 and n3 fatty acid precursors and derivatives were evaluated on phospholipid composition and PGE2 synthesis of rat kidneys. Dietary lipids were: olive oil, an olive-blackcurrant-fish oil mixture and a blackcurrant-fish oil mixture. We observed in the kidneys of rats fed the blackcurrant-fish oil mixture a significant decrease in PGE2 synthesis, while arachidonate values did not show significant variations. A decrease of PGE2 synthesis could be due to competitive and inhibitory effects of fatty acids other than arachidonate, observed in the kidney phospholipid composition in our dietary conditions.  相似文献   

10.
Candida cloacae cells oxidize long-chain fatty acids to their corresponding dicarboxylic acids (dioic acids) at rates dependent on their chain length and degree of saturation. This is despite the well-known toxicity of the fatty acids. Among the saturated substrates, the oxidation is limited to lauric acid (C12). The addition of pristane (5% v/v), which acts as an inert carrier for the poorly water-soluble substrate, boosts the oxidation of lauric acid to a rate that is comparable to that of dodecane. When dissolved in pristane, myristic (C14) and palmitic (C16) acids are effective carbon sources for C. cloacae, but dioic acid production is very low. Media glucose concentration and pH also influence cell growth and productivity. After the glucose is depleted, oxidation is optimal at a low pH. A two-phase (pristane/water) reaction was tested in a 2-l stirred tank bioreactor in which growth and oxidation were separated. A 50% w/w conversion of lauric acid (10 g/l) to dodecanedioic acid was achieved. The bioreactor also alleviated poor mass transfer characteristics experienced in shake flasks.  相似文献   

11.
12.
Candida lipolytica was grown continuously on n-hexadecane as the main source of carbon. A transient continuous-culture experiment was also conducted to investigate hydrocarbon-limited growth; the hydrocarbon feed flow rate was stopped for several hours and then resumed at a reduced steady-state flow rate. Interfacial tension, Sauter mean diameter, pseudosolubility, fraction of cells in the aqueous phase, oil-phase volume fraction, and cell concentration were measured to characterize the system. The microorganisms appear to utilize both the submicron drops and the microscopic drops. The effects of interfacial tension, pseudosolubility, and unoccupied interfacial area on the kinetics of hydrocarbon fermentation are discussed here. A conceptual model for hydrocarbon uptake is presented and discussed.  相似文献   

13.
Complementation and Genetic Recombination in Candida lipolytica   总被引:4,自引:3,他引:1       下载免费PDF全文
Nutritional requirements were introduced into wild-type, heterothallic strains of Candida lipolytica by exposing the cells to X rays. Complementing hybrids were recovered from mixtures of the auxotrophic strains, and genetic recombination was observed in individually isolated ascospores from the hybrid strains.  相似文献   

14.
Whole cells of the yeast Candida lipolytica exhibited a high, cyanide-sensitive endogenous respiration which became completely cyanide-insensitive under certain physiological circumstances namely (1) in the stationary phase of growth and (2) upon aeration in the resting state. This cannot be due to a change in permeability of the cell wall as the respiration of protoplasts showed the same (in)sensitivity to cyanide as the cells from which they were obtained.The cyanide-insensitive respiration of C. lipolytica was located in the mitochondria and coexisted with the normal respiratory chain, as the mitochondria isolated from cyanide-insensitive cells exhibited at the same time a cyanidesensitive respiration of ascorbate and N,N,N,N-tetramethyl-p-phenylenediamine and a cyanide-insensitive respiration of succinate.The alternate respiratory pathway was sensitive to benzyl- and salicylhydroxamic acids. In this respect it resembles the alternate mitochondrial pathway described in the literature for various plants.The cyanide-insensitive respiration did not appear in the resting state when the cells were aerated in the presence of cycloheximide nor at 0 C instead of at room temperature. These facts suggest some form of induction involving new protein synthesis. The induction process depends on the presence of molecular oxygen as the cyanide-insensitive endogenous respiration did not appear during agitation of yeast cells in the resting state if the gaseous atmosphere lacked oxygen.  相似文献   

15.
Summary The effects of cerulenin, an anti-lipogenic antibiotic, on the growth and cellular fatty acid composition ofCandida lipolytica were investigated by changing the chain length of n-alkane, the growth substrate. The antibiotic inhibited almost completely the growth of the yeast on glucose, n-undecane and n-dodecane, but partly that on n-tridecane. The yeast growth on longer alkanes, e.g., from n-tetradecane to n-octadecane, was not affected by this antibiotic, indicating that a chain elongation system and/or intact incorporation system predominantly operate in the formation of cellular fatty acids from such longer chain n-alkanes. Comparison of the fatty acid profiles between the cells grown on n-alkanes of different chain lengths, especially on n-pentadecane, in the presence and absence of cerulenin, supported the supposition that only the de novo synthesis system of the yeast would be affected by the antibiotic, whereas the chain elongation system would not.  相似文献   

16.
Yeast cells take up exogenous fatty acids with subsequent rapid incorporation into glycerolipids. beta-Oxidation does not occur in Saccharomyces uvarum and is observed in Saccharomycopsis lipolytica only 2-5 min after addition of radioactively labeled fatty acid. Rates of fatty acid uptake are linear up to 30 s with S. lipolytica and up to 2 min with S. uvarum. The uptake kinetics are consistent with a dual mode of transport, comprising a saturable component with KT values in the range 10(-5)-10(-6) M, and apparently simple diffusion that predominates at high substrate concentrations. Kinetics of fatty acid permeation are independent of metabolic energy and membrane potential. At least two fatty acid carrier systems exist in both S. lipolytica and S. uvarum, one being specific for fatty acids with 12 and 14 C atoms, respectively, the other for C16 and C18 saturated or unsaturated fatty acids. Octanoic acid and decanoic acid are not taken up by S. lipolytica. Internalization of lauric acid and oleic acid by S. lipolytica cells is preceded by a rapid (less than 5 s) initial uptake which most likely represents irreversible adsorption. This phenomenon was not observed with heat-inactivated S. lipolytica cells or with viable S. uvarum. In azide-poisoned cells of S. lipolytica an up to 20-fold accumulation of unesterified fatty acid was observed within 30 s after the addition of substrate.  相似文献   

17.
18.
Candida lipolytica yeast was grown batchwise on two different carbon sources, glucose and n-hexadecane. Free ceramides were quantitatively isolated from sphingolipid fractions of total lipids by a combination of column chromatography and preparative thin-layer chromatography. Their composition, after acid methanolysis, was analysed by gas-liquid chromatography. The ceramide content accounted for 2.6% of the total cell lipids in hexadecane-grown cells, which was 1.5 times higher than in glucose-grown cells. The fatty acid composition of ceramides was characterized by the predominance of fatty acids shorter than 20 carbon atoms and by high concentrations of fatty acids with 16 carbon atoms after growth on both carbon sources. The dominant fatty acid was hydroxylated 16:0 in the glucose-grown cells and 16:0 in the hexadecane-grown cells. The striking finding was the low degree of fatty acid hydroxylation and relatively high proportion of odd-numbered fatty acids in ceramide of the n-hexadecane-grown cells. The ceramides contained an unusual long-chain base composition. In hexadecane-grown cells more than 60% of the long-chain bases were C19 phytosphingosine. In glucose-grown cells more than one-half of the total long-chain bases were tetrahydroxy bases, 4,5-dihydroxysphinganine and 4,5-dihydroxyeicosasphinganine. Received: 20 April 1998 / Received revision: 10 July 1998 / Accepted: 29 July 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号