首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to explain the attenuated sympathetic support during the development of heart failure, the status of -adrenergic mechanisms in the failing myocardium was assessed by employing cardiomyopathic hamsters (155–170 days old) at moderate degree of congestive heart failure. The norepinephrine turnover rate was increased but the norepinephrine content was decreased in cardiomyopathic hearts. The number and the affinity of receptors in the sarcolemmal preparations were not changed in these hearts at moderate stage of congestive heart failure. While the basal adenylyl cyclase activity was not altered in sarcolemma, the stimulation of enzyme activity by NaF, forskolin, Gpp(NH)p or epinephrine was depressed in hearts from these cardiomyopathic hamsters. Since G-proteins are involved in modifying the adenylyl cyclase activity, the functional and bioactivities as well as contents of both Gs and Gi proteins were determined in the cardiomyopathic heart sarcolemma. The functional stimulation of adenylyl cyclase by cholera toxin, which activates Gs proteins, was markedly depressed whereas that by Pertussis toxin, which inhibits Gi proteins, was markedly augmented in cardiomyopathic hearts. The cholera toxin and pertussis toxin catalyzed ADP-ribosylation was increased by 37 and 126%, respectively; this indicated increased bioactivities of both Gs and Gi proteins in experimental preparations. The immunoblot analysis suggested 74 and 124% increase in Gs and Gi contents in failing hearts, respectively. These results suggest that depressed adenylyl cyclase activation in cardiomyopathic hamsters may not only be due to increased content and bioactivity of Gi proteins but the functional uncoupling of Gs proteins from the adenylyl cyclase enzyme may also be involved at this stage of heart failure.  相似文献   

2.
The Bio 14.6 hamster has a well-documented cardiomyopathy which leads to congestive heart failure. Previous work demonstrated that hearts from these hamsters have depressed fatty acid oxidation and depressed carnitine concentrations compared to those of normal hamsters. Analyses of tissue carnitine concentrations from 40 to 464 days of age demonstrate that the cardiomyopathic hamsters have a cardiac carnitine deficiency throughout life. Therefore, the carnitine deficiency is not a secondary effect of an advanced stage of the cardiomyopathy. Both the observation that other tissues of the cardiomyopathic hamster have normal or markedly elevated carnitine concentrations and the observation that oral carnitine treatment could not increase the cardiac carnitine concentrations to those of normal hamsters are consistent with the hypothesis that the cardiac carnitine deficiency is the result of a defective cardiac transport mechanism. Cardiac carnitine-binding protein (which may function in the cardiac carnitine transport mechanism) prepared from hearts of cardiomyopathic hamsters had a lower maximal carnitine binding and an increased dissociation constant for carnitine compared to the cardiac carnitine-binding protein prepared from normal hamsters. Thus, several types of data indicate that the cardiomyopathic hamster has an altered cardiac carnitine transport mechanism.  相似文献   

3.
1. Comparisons of left intraventricular end diastolic and systolic pressures, cardiac output, dP/dt, stroke volume and heart rate were made between the Bio 14.6 cardiomyopathic and F1B normal hamster at 45, 80, 150 and 240 days of age. 2. Comparisons of the ventricular calcium and taurine contents were made between the two strains of hamsters at similar ages. 3. Interstrain comparisons of the 240 day Bio 14.6 with age matched F1B hamsters and intrastrain comparisons with 45 day Bio 14.6 hamsters showed a decreased stroke volume, cardiac output and dP/dt with an increased left intraventricular end diastolic pressure, ventricular weight, ventricular weight/body weight ratio, heart calcium and taurine. 4. Despite the decreased left ventricular systolic pressure and cardiac output in the 80 day and older groups of Bio 14.6 hamsters, no compensatory increase in heart rate was observed.  相似文献   

4.
The cardiac β-adrenergic coupled adenylate cyclase system was examined in young and old male Wistar rats. The concentration of binding sites for (?) 3H-DHA in membranes prepared from cardiac ventricles was 21.1 ± 2.78 (SD) fmoles/mg protein in 3–4 month old rats (young rats) and 31.2 ± 2.20 fmoles/mg protein in 24 month old rats (old rats). The dissociation constant, KD was 4.3 ± 1.8 nM and 6.7 ± 1.7 nM for young and old rats, respectively. Various compounds were used to study the characteristics of activation of adenylate cyclase in homogenates from cardiac ventricles. Basal adenylate cyclase was reduced 30% in old animals compared to young (6.1 pmoles/min/mg protein in 24 month vs. 8.6 pmoles/min/mg protein in 3–4 month). (?)Isoproterenol (10?5M) alone stimulated adenylate cyclase greater than two-fold in young rats (10.6 pmoles/min/mg protein above basal) and this stimulation was 34% lower in old animals. GppNHp (100 μM), fluoride (10 mM), and forskolin (100 μM) activation of adenylate cyclase above basal was reduced 38, 37, and 34%, respectively, in the old animals. No significant changes between the two groups were noted in the apparent affinity of GppNHp either alone or in the presence of (?)isoproterenol nor in the affinities of catecholamine agonists for activation of cyclase. These results suggest a reduction in the amount of functional regulatory protein or possibly cyclase in 24 month old rat ventricular tissue compared to 3–4 month old tissue. However, this data does not rule out the possibility of altered molecular interactions of a full complement of regulatory protein (s) with β-adrenergic receptor and/or catalytic adenylate cyclase.  相似文献   

5.
Rat reticulocytes contain an isoproterenol-sensitive adenylate cyclase activity which is lost with maturation to erythrocytes despite no change in the density of β-adrenergic receptors. To explore this observation, a cytosol factor, previously shown to be important in the expression of catecholamine-sensitive adenylate cyclase in the reticulocyte, was compared to a cytosol factor obtained in a similar manner from mature erythrocytes. The cytosol factor from reticulocytes augmented isoproterenol-responsive adenylate cyclase activity in reticulocyte and erythrocyte membranes half-maximally at 0.7 ± 0.1 (SEM) and 1.1 ± 0.3 μg/ml, respectively. These concentrations of reticulocyte-derived cytosol factor were significantly lower (P < 0.01) than those concentrations of the factor from erythrocytes necessary to augment isoproterenol-responsive adenylate cyclase activity in reticulocyte (9.7 ± 2.3) and erythrocyte (7.5 ± 1.0) membranes. Cytosol factor from reticulocytes also caused greater total isoproterenol responsiveness than that from erythrocytes both in reticulocyte (784 ± 107 vs 525 ± 65 pmol/mg protein) and in erythrocyte membranes (54 ± 6 vs 36 ± 3); P < 0.05. Neither reticulocyte nor erythrocyte cytosol factor affected the concentration at which isoproterenol half-maximally stimulated adenylate cyclase in either set of membranes. However, the cytosol factor from reticulocytes markedly decreased the binding affinity of isoproterenol for β receptors in reticulocytes from 0.8 ± 0.2 to 6.9 ± 1.4 μm; P < 0.001. This reticulocyte factor had no significant effect on the binding affinity of isoproterenol for erythrocyte membranes. Erythrocyte factor did not change the binding affinity for isoproterenol in either reticulocyte or erythrocyte membranes.  相似文献   

6.
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC’s (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (α/β) β1 isoform of the β subunit of NOGC (NOGCβ1) was specifically focused. NOGCβ1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCβ1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCβ1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 ± 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 ± 3.4 vs. 1.2 ± 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCβ1 abundance was reduced using specific siRNA to NOGCβ1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCβ1 (530.2 ± 141.4 vs. 26.1 ± 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCβ1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 ± 22 vs. 92 ± 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCβ1 and GC-A interact and that NOGCβ1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.  相似文献   

7.
Hamsters of the BIO 14.6 strain characteristically develop cardiomyopathy as they age, and hamsters of this strain have overt signs of heart failure by 11 months of age. Plasma levels of the posterior pituitary hormone arginine-vasopressin (AVP) were found to be elevated (approximately 2-fold) in 11 month old BIO 14.6 hamsters, compared to age-matched hamsters of a control strain. AVP appeared inappropriately elevated in these animals, since they were neither hyperosmotic nor markedly hypotensive. The elevated levels of AVP observed in these animals appears to contribute to vasomotor tone, since intravenous adminstration of a specific antagonist of the vasoconstrictor action of AVP [d(CH2)5Ome(TYR)AVP] elicited a fall in arterial pressure (9±2 mm Hg, n=6, p<0.05). The AVP antagonist had no effect on arterial pressure in hamsters of a control strain, and vehicle administration had no effect on arterial pressure in either strain. These data indicate that inappropriately elevated levels of AVP contribute to the cardiovascular state of myopathic hamsters. Since elevated plasma AVP has been noted in human congestive heart failure, these results suggest that AVP may contribute to the cardiovascular status during congestive heart failure.  相似文献   

8.
Alterations in alpha(1)-adrenoceptor (alpha(1)AR) density and related signal transduction proteins were reported in cardiomyopathic hearts in the failing stage. The electromechanical modification of alpha(1)-adrenergic stimulation in the failing heart is unclear. The present study compares the alpha(1)AR-stimulated electromechanical response in failing ventricles of genetically cardiomyopathic BIO 14.6 hamsters (280-320 days old) with that in age-matched normal Syrian hamsters. The action potential was recorded with a conventional microelectrode technique, and twitch force was measured with a transducer. In the presence of propranolol, phenylephrine increased the contraction and prolonged the action potential duration (APD) to similar values in ventricles of both strains, despite a prolonged basal APD in cardiomyopathic ventricles. The positive inotropism stimulated by phenylephrine was inhibited by staurosporine, and was potentiated by 4 beta-phorbol-12,13-dibutyrate (PDBu) in both strains. The maximum positive inotropic effect of phenylephrine in PDBu-treated ventricles of normal hamsters was significantly greater than that in BIO 14.6 hamsters. The effects of phenylephrine on the ventricular force-frequency relationship and on the mechanical restitution in both normal and BIO 14.6 strain hamsters were examined. The uniform negative force-frequency relationship and the altered mechanical restitution reveal a defect of intracellular Ca(2+) handling in cardiomyopathic BIO 14.6 hamsters. alpha(1)-Adrenergic modulation cannot convert the defective properties in the model of the failing heart. Nevertheless, phenylephrine decreased post-rest potentiation in short rest periods, and enhanced post-rest decay after longer resting periods. The results indicate that alpha(1)-adrenergic action enhances a gradual loss of Ca(2+) from the sarcoplasmic reticulum, although its action in prolonging the APD can indirectly increase the influx of Ca(2+).  相似文献   

9.
In general, it is recognized that prolonged exposure to catecholamine leads to a reduction in the -adrenoceptor density (downregulation). However, it has been previously reported that the myocardial -adrenoceptor densities and norepinephrine levels significantly increase in the hearts of BIO 14.6 cardiomyopathic hamsters in the early stage. The mechanism of the increased -adrenoceptor density is not clearly elucidated, and it can not be excluded that this phenomenon may be a secondary effect. The purpose of this study was to assess the effect of verapamil on the density of -adrenoceptors in the heart of BIO 14.6 cardiomyopathic hamsters. The total number of -adrenoceptors in untreated BIO 14.6 hamsters was significantly higher at 90 days of age (30.4±2.2 v.s. 25.9±1.4 fmol/mg protein, p<0.05). BIO 14.6 hamsters received daily intraperitoneal injections of 5 mg/kg verapamil for 70 days, from an age of 20 days. Verapamil protected against progressive myocardial damage (total damage; 8.2±0.7 v.s. 0.4±0.2%/area, p<0.05) and the myocardial -adrenoceptor density returned to that of the normal control group (26.9±3.0 fmol/mg protein). Conversely, verapamil did not have an effect on the number of myocardial -adrenoceptors in normal golden hamsters. This study showed that verapamil protected against progressive myocardial damage and myocardial -adrenoceptor density returned to those of normal hamsters. These results suggest that an increased number of -adrenoceptors in the early stage of BIO 14.6 cardiomyopathic hamsters may be involved in the secondary pathogenesis of cardiomyopathy.  相似文献   

10.
To examine the role of endothelin ETA and ETB receptors in congestive heart failure due to cardiomyopathy, the effect of chronic treatment with selective ETA- and ETB-receptor antagonists (atrasentan and A-192621, respectively), alone and in combination, was assessed on functional and biochemical parameters of 52-week-old Bio 14.6 cardiomyopathic hamsters. Compared with control animals, cardiomyopathic hamsters treated for 9 weeks with atrasentan showed no variation in MAP; however, selective ETB- and combined nonselective ETA- and ETB-receptor antagonists increased systemic blood pressure. After selective ETB-receptor blockade, plasma endothelin levels were augmented. Importantly, this increase was highly enhanced (more than 8-fold) by concomitant ETA-receptor antagonism. Furthermore, the left ventricle:body weight ratio of cardiomyopathic hamsters treated with A-192621, alone or in combination with atrasentan, was significantly increased. On the other hand, decreased left ventricular end-diastolic pressure was observed in cardiomyopathic hamsters after selective ETA- or combined nonselective ETA/ETB-receptor antagonism, while only selective ETA-receptor blockade reduced left ventricular endothelin levels. Our results suggest that, in congestive heart failure, ETB receptors are essential to limit circulating endothelin levels, which may argue for improved cardiac benefits after long-term treatment with highly selective ETA-receptor antagonists.  相似文献   

11.
《Life sciences》1986,39(13):1151-1159
Immunoreactive atrial natriuretic factor (IR-ANF) was measured in plasma and atrial extracts from normal and cardiomyopathic Syrian golden hamsters. Plasma IR-ANF was increased from 84.8 ± 9.8 pg/ml(n = 17) to 234 ± 23 (n = 25; P<.0001) in hamsters with moderate failure, and to 1085 ± 321 pg/ml (n = 10; P<.02) in animals with severe failure. Plasma IR-ANF increased with increased atrial hypertrophy. Atrial IR-ANF content was essentially the same in normal animals and in those with moderate heart failure (3.06 ± 0.28 vs 3.17 ± 0.19 μg/100 g body wt., P<.001) and lower in the majority of those with severe failure (1.82 μg/100 g body wt., P<.001). The elevations of IR-ANF in plasma are similar to those seen in patients with congestive heart failure. Our studies do not support bioassay results showing a deficiency of atrial ANF content as being important in the congestive heart failure associated with cardiomyopathy in the hamster.  相似文献   

12.
1. Comparisons of the effects of 4 and 16 weeks of exercise were made on; cardiac output, stroke volume, heart rate, left intraventricular systolic and diastolic pressures, dP/dt, and heart calcium in the Bio 14.6 cardiomyopathic and F1 B hamsters. 2. In the cardiomyopathic hamster the cardiac output, stroke volume, left intraventricular systolic pressure and dP/dt, which were all depressed in the age related sedentary animals, were increased by both periods of exercise. The left intraventricular diastolic pressure which was elevated was likewise decreased by both exercise periods. Only the 16 week exercise period decreased the resting heart rate. 3. In the normal F1 B hamster, both periods of exercise increased the cardiac output and stroke volume while the left intraventricular systolic pressure was decreased. Only the 16 week exercise decreased the resting heart rate and left intraventricular diastolic pressure and increased the left ventricular dP/dt. 4. Both periods of exercise increased the total heart calcium in the Bio 14.6 hamster while the heart calcium in the F1 B was increased only by the 16 week exercise period.  相似文献   

13.
Diuretic and natriuretic activities of atrial extracts from BIO 14.6 (cardiomyopathic) and F1B (normal) hamsters at 180 days of age were measured by rat bioassay. Both activities were lower in BIO 14.6 extracts. Because of the reported protective action of taurine in the cardiomyopathic hamster, we tested the effect of 0.1 M taurine drinking upon the activity of atrial extracts. Urine flow and Na+ excretion were increased in both BIO 14.6 and F1B; however, comparatively larger increases in BIO 14.6 taurine drinkers abolished strain differences that were observed in water drinkers. Taurine drinking BIO 14.6 hamsters exhibited an increased plasma sodium concentration. Drinking of 0.6% NaCl also produced an elevated plasma sodium concentration in BIO 14.6. Extracts from hamsters with increased salt intake had diuretic and natriuretic activities that were not different from those of water drinkers. These findings confirm that ANF activity is deficient in BIO 14.6 hamsters, and this suggests a role for taurine in its production, release, and/or activation.  相似文献   

14.
Beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase activity were studied in erythrocytes obtained from rats 6 weeks, 6 months, and 15 months of age. Intact erythrocytes from 6 week old rats contained significantly more beta receptors (411 ± 31 sites/cell) than 6 month (328 ± 21) or 15 month old rats (335 ± 16), as determined by binding of [125I] iodohydroxybenzylpindolol. Erythrocytes from 6 week old rats also contained significantly greater isoproterenol-sensitive adenylate cyclase activity (95.0 ± 9.4pmoles/109 cells) than erythrocytes from 6 month (27.9 ± 3.3) or 15 month old rats (23.7 ± 3.6). The erythrocyte population of 6 week old rats was bigger (mean corpuscular volume = 62 ± 2μ3/cell) than the older rat erythrocytes (47 ± 1μ3 and 48 ± 1μ3). When the data were expressed relative to a unit of cell volume, there was no difference in the density of beta receptors among all three populations but a progressive and significant fall in hormone-sensitive adenylate cyclase activity. In the rat erythrocyte, the age-related loss of adenylate cyclase activity is not accompanied by changes in β-receptor density.  相似文献   

15.
We compared hemodynamics with [3H]nitrendipine (calcium channel) binding to cardiac membranes from Bio 14.6 cardiomyopathic Syrian hamsters at 4 and 10 months with their F1B controls. A 50% increase in the number (Bmax) of nitrendipine binding sites (calcium channels) was seen only in the 4 month old myopathic vs controls (Bmax = 468 +/- 11 vs 309 +/- 10 fmol/mg prot with no change in affinity (KD) (KD = .65 +/- .12 vs .75 +/- .14 nM), while no differences in Bmax or KD were seen at 10 months (Bmax = 375 +/- 9 vs 362 +/- 7 fmol/mg prot/KD = .82 +/- .18 vs .89 +/- .17 nM) myopathic vs control respectively. Hemodynamic studies revealed no significant differences in cardiac output, cardiac index, stroke volume, heart rate, mean arterial pressure, peripheral resistance, body weight, heart weight at 4 months, but a significant decrease in peripheral resistance (1120 +/- 360 vs 2080 +/- 240) increase in body weight (118 +/- 2 vs 94 +/- 2 grams) and heart weight (97 +/- 5 vs 78 +/- 2 gms/100 gms body weight) in 10 month myopathic vs control animals. We conclude that the onset of cardiomyopathy at 4 months is associated with a selective increase in calcium channel binding sites and heart failure at 10 months is associated with a relative decrease in these sites.  相似文献   

16.
In the present study, DNA oxidative damage was elevated and superoxide dismutase (Cu,Zn-SOD) metabolism was disturbed in the kidney of alloxan-induced diabetic animals. The effects of pioglitazone and repaglinide, new oral antidiabetics, on 8-hydroxy-2′-deoxyguanosine (8-OHdG) and Cu,Zn-SOD were studied. Diabetic versus control levels (mean ± SE) of 8-OHdG were 24.9 ± 0.2 vs. 21.8 ± 0.1 and 21.5 ± 0.2 vs 20.1 ± 0.2 pmol/μg DNA after 4 and 8 weeks, respectively. At p<0.05, pioglitazone diminished this parameter in diabetic animals (22.0 ± 0.2 and 20.1 ± 0.3 pmol/μg DNA). The level was not affected in diabetic groups receiving repaglinide (24.9 ± 0.2 and 21.5 ± 0.3 pmol/μg DNA). In diabetic kidney, Cu,Zn-SOD mRNA was diminished relative to control animals and was modulated by pioglitazone and repaglinide treatments. Simultaneously, Cu,Zn-SOD activity was also diminished (1.5 ± 0.2 vs. 2.8 ± 0.3 and 1.8 ± 0.1 vs 2.9 ± 0.3 U/mg protein after 4 and 8 weeks, respectively) and partly changed after pioglitazone (2.1 ± 0.4 and 2.3 ± 0.3 U/mg protein) and repaglinide (2.0 ± 0.1 and 2.4 ± 0.2 U/mg protein). These results suggest that a reduction in oxidative stress in diabetic kidney can be achieved with the administration of pioglitazone and to some extent using repaglinide treatment.  相似文献   

17.
A human thyroid adenoma (benign nodule) was identified which exhibited a linear Scatchard plot of 125I-TSH binding, characteristic of a single class of binding site with high affinity (Kd = 0.5±0.1 nM) and low binding capacity (0.8±0.2 pmol/mg protein). In contrast, Scatchard analysis of binding to adjacent normal thyroid was nonlinear, suggesting the presence of high and low-affinity binding sites with Kd's of 0.4±0.2 and of 27.9±11.0 nM and capacities of 0.7±0.3 and 1.8±1.0 pmol/mg protein, respectively. Dissociation of bound 125I-TSH from membranes of both adenoma and normal tissue revealed identical enhancement of dissociation in the presence of excess native hormone, thought to be evidence for the “negative cooperativity” model of hormone-receptor interaction. Furthermore, adenylate cyclase from both tissues was equally responsive to TSH. Thus, a thyroid adenoma which contains TSH-responsive adenylate cyclase still exhibited enhanced dissociation by native hormone, even though Scatchard analysis yielded a single, non-cooperative class of binding sites. This suggests that enhanced dissociation of bound hormone does not provide a demonstration of negatively-cooperative site-site interaction. Furthermore, nonlinear Scatchard plots, typical of TSH binding in normal thyroid, represent two classes of binding sites, of which the high affinity type is responsible for stimulation of adenylate cyclase.  相似文献   

18.
The Na,K-ATPase function appears impaired in human heart failure with dilation; however little is known in animal model with idiopathic dilated cardiomyopathy. We studied Na,K-ATPase isoform composition and activity from cardiomyopathic hamsters of the MS 200 strain with pure dilated cardiomyopathy and compared them with those of healthy Syrian hamsters. 150-day-old male MS 200 Syrian hamsters (n = 16) and sex- and age-matched healthy Syrian hamsters (n = 15) were used. Antibodies specific for the three alpha-isoforms and against the beta1-isoform were used to study Na,K-ATPase isoform expression in ventricular myocardium. Na,K-ATPase activity was quantified in homogenate and membrane fractions. There was no significant change in left ventricular mass. Morphological examination revealed a decreased septum thickness in the dilated cardiomyopathy compared with control hamster. Idiopathic dilated cardiomyopathy in hamsters presented significantly reduced membrane alpha1 and beta1 abundances and reduced Na,K-ATPase activity (-35% vs. healthy control, p<0.05). Chronic heart failure had no effect on the Na,K-ATPase alpha2-subunit protein. We have demonstrated for the first time that dilated cardiomyopathy induces a specific reduction of both membrane alpha1- and beta1-isoform abundance and Na,K-ATPase activity in hamsters similar to those previously reported in human dilated heart failure.  相似文献   

19.
Objective : To study the effects of a 12-week weight loss strategy involving increased physical activity, self-selected hypocaloric diet, and group support on psychological well-being, quality of life, and health practices in moderately obese women. Methods; Eighty women aged 20–49 years weighing between 20–50% above 1983 Metropolitan Life Insurance Tables were randomly assigned to a weight loss intervention (6279 kJ/week of physical activity, 33,258-41,462 kJ/week diet and weekly meetings) or served as controls. Subjects were tested pre and post 12-weeks. Results : The intervention group lost significant (p<0.001) body weight (kg) and body fat (%) compared to controls (-6.07 ± 4.01 kg vs. 1.31 ± 1.28 kg; 36.8%-32.5% vs. 36.2%-36.0%). Intervention subjects vs. controls achieved significant improvements (p<0.001) in body cathexis (X Change 18.6 ± 16.7 vs. 0.7 ± 8.6) and estimation of ability to achieve physical fitness (X Change 8.1 ± 7.1 vs. 0.9 ± 5.9). Various quality of life indices also improved (p<0.01) in the intervention group compared to controls (physical function: X Change 13.5.2 ± 16.7 vs. 1.4 ± 9.5; vitality: X change 21.7 ± 17.9 vs. 2.9 20.8; mental health: X change 10.4 ± 16.0 vs. 2.3 ± 10.1). Similarly, physical activity levels also improved significantly (p<0.0001) in the intervention group (4.4 ± 2.3 vs. 0.6 ± 1.3; on NASA 0–7 scale). Conclusions : Practical weight loss practices such as increased activity, self-selected hypocaloric diet, and group support are effective for weight loss and yield significant health and psychological benefits in moderately obese females.  相似文献   

20.
Guanine nucleotide-binding regulatory proteins (G proteins) play a major role in the regulation of a number of physiological processes, such as stimulation or Inhibition of adenylate cyclase activity or gaiting of ionic channels. Myocardial ischemia could induce the changes in receptor-G protein signal transduction system in the heart. Therefore, this article will focus on the role and alterations of G proteins (especially, Gs and Gi) in myocardial ischemia. The Gi protein rapidly loses functional activity during very early myocardial ischemia. In contrast to Gi protein, the function of Gs protein during this phase has not been evaluated. Moreover, the changes in Gs protein after 30 min of ischemia are contradictory. However, the sensitization of the adenylate cyclase activity in the very early phase of acute ischemia is gradually replaced by a decrease in adenylate cyclase activity with prolonged ischemia. The decrease in the function and amount of Gs protein may be one of the factors that induce these changes. The function of Gs protein was also decreased in the canine hearts with ischemia and reperfusion. In contrast to ischemia and reperfusion, there are no significant alterations in G proteins and modulation of adenylate cyclase in the stunned myocardium. It has become increasingly evident that Gi protein may play an important role in the cardioprotective effects of preconditioning. When -adrenoceptor densities are reduced in chronic myocardial ischemia, decreased in the amount and function of Gi protein and increased amount of Gs protein may play the role in preservation of the adenylate cyclase activity. These alterations in G proteins may play the important role in the myocardial function during myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号