首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage asccphi28 infects dairy fermentation strains of Lactococcus lactis. This report describes characterization of asccphi28 and its full genome sequence. Phage asccphi28 has a prolate head, whiskers, and a short tail (C2 morphotype). This morphology and DNA hybridization to L. lactis phage P369 DNA showed that asccphi28 belongs to the P034 phage species, a group rarely encountered in the dairy industry. The burst size of asccphi28 was found to be 121 +/- 18 PFU per infected bacterial cell after a latent period of 44 min. The linear genome (18,762 bp) contains 28 possible open reading frames (ORFs) comprising 90% of the total genome. The ORFs are arranged bidirectionally in recognizable functional modules. The genome contains 577 bp inverted terminal repeats (ITRs) and putatively eight promoters and four terminators. The presence of ITRs, a phage-encoded DNA polymerase, and a terminal protein that binds to the DNA, along with BLAST and morphology data, show that asccphi28 more closely resembles streptococcal phage Cp-1 and the phi29-like phages that infect Bacillus subtilis than it resembles common lactococcal phages. The sequence of this phage is the first published sequence of a P034 species phage genome.  相似文献   

2.
3.
Sabehi G  Lindell D 《PloS one》2012,7(5):e36710
P-SSP7 is a T7-like phage that infects the cyanobacterium Prochlorococcus MED4. MED4 is a member of the high-light-adapted Prochlorococcus ecotypes that are abundant in the surface oceans and contribute significantly to primary production. P-SSP7 has become a model system for the investigation of T7-like phages that infect Prochlorococcus. It was classified as T7-like based on genome content and organization. However, because its genome assembled as a circular molecule, it was thought to be circularly permuted and to lack the direct terminal repeats found in other T7-like phages. Here we sequenced the ends of the P-SSP7 genome and found that the genome map is linear and contains a 206 bp repeat at both genome ends. Furthermore, we found that a 728 bp region of the genome originally placed downstream of the last ORF is actually located upstream of the first ORF on the genome map. These findings suggest that P-SSP7 is likely to use the direct terminal repeats for genome replication and packaging in a similar manner to other T7-like phages. Moreover, these results highlight the importance of experimentally verifying the ends of phage genomes, and will facilitate the use of P-SSP7 as a model for the correct assembly and end determination of the many T7-like phages isolated from the marine environment that are currently being sequenced.  相似文献   

4.
The φ29-like phage genus of Podoviridae family contains phages B103, BS32, GA-1, M2, Nf, φ15, φ29, and PZA that all infect Bacillus subtilis. They have very similar morphology and their genomes consist of linear double-stranded DNA of approximately 20 kb. The nucleotide sequences of individual genomes or their parts determined thus far show that these phages evolved from a common ancestor. A terminal protein (TP) that is covalently bound to the DNA 5′-end primes DNA replication of these phages. The same mechanism of DNA replication is used by the Cp-1 related phages (also members of the Podoviridae family) and by the phage PRD1 (member of the Tectoviridae family). Based on the complete or partial genomic sequence data of these phages it was possible to analyze the evolutionary relationship within the φ29-like phage genus as well as to other protein-primed replicating phages. Noncoding regions containing origins of replication were used in the analysis, as well as amino acid sequences of DNA polymerases, and with the φ29-like phages also amino acid sequences of the terminal proteins and of the gene 17 protein product, an accessory component of bacteriophage DNA replicating machinery. Included in the analysis are also results of a comparison of these phage DNAs with the prophages present in the Bacillus subtilis genome. Based on this complex analysis we define and describe in more detail the evolutionary branches of φ29-like phages, one branch consisting of phages BS32, φ15, φ29, and PZA, the second branch composed of phages B103, M2, and Nf, and the third branch having phage GA-1 as its sole member. In addition, amino acid sequences of holins, proteins involved in phage lysis were used to extend the evolutionary study to other phages infecting Gram-positive bacteria. The analysis based on the amino acid sequences of holins showed several weak points in present bacteriophage classification. Received: 14 April 1998 / Accepted: 31 July 1998  相似文献   

5.
W J Meijer  J A Horcajadas  M Salas 《Microbiology and molecular biology reviews》2001,65(2):261-87 ; second page, table of contents
  相似文献   

6.
Xp10 is a lytic bacteriophage of the phytopathogenic bacterium Xanthomonas oryzae. Though morphologically Xp10 belongs to the Syphoviridae family, it encodes its own single-subunit RNA polymerase characteristic of T7-like phages of the Podoviridae family. Here, we report the determination and analysis of the 44,373 bp sequence of the Xp10 genome. The genome is a linear, double-stranded DNA molecule with 3' cohesive overhangs and no terminal repeats or redundancies. Half of the Xp10 genome contains genes coding for structural proteins and host lysis functions in an arrangement typical for temperate dairy phages that are related to the Escherichia coli lambda phage. The other half of the Xp10 genome contains genes coding for factors of host gene expression shut-off, enzymes of viral genome replication and expression. The two groups of genes are transcribed divergently and separated by a regulatory region, which contains divergent promoters recognized by the host RNA polymerase. Xp10 has apparently arisen through a recombination between genomes of widely different phages. Further evidence of extensive gene flux in the evolution of Xp10 includes a high fraction (10%) of genes derived from an HNH-family endonuclease, and a DNA-dependent DNA polymerase that is closer to a homolog from Leishmania than to DNA polymerases from other phages or bacteria.  相似文献   

7.
The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure – a blunt right end and a 4-nucleotide 3′-protruding left end – was observed. Secondly, 14 single-chain interruptions (nicks) were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5′-TACT/RTGMC-3′. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.  相似文献   

8.
Only little information on a particular class of myoviruses, the SPO1-like bacteriophages infecting low-G+C-content, gram-positive host bacteria (Firmicutes), is available. We present the genome analysis and molecular characterization of the large, virulent, broad-host-range Listeria phage A511. A511 contains a unit (informational) genome of 134,494 bp, encompassing 190 putative open reading frames (ORFs) and 16 tRNA genes, organized in a modular fashion common among the Caudovirales. Electron microscopy, enzymatic fragmentation analyses, and sequencing revealed that the A511 DNA molecule contains linear terminal repeats of a total of 3,125 bp, encompassing nine small putative ORFs. This particular genome structure explains why A511 is unable to perform general transduction. A511 features significant sequence homologies to Listeria phage P100 and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Equivalent but more-extensive terminal repeats also exist in phages P100 (approximately 6 kb) and K (approximately 20 kb). High-resolution electron microscopy revealed, for the first time, the presence of long tail fibers organized in a sixfold symmetry in these viruses. Mass spectrometry-based peptide fingerprinting permitted assignment of individual proteins to A511 structural components. On the basis of the data available for A511 and relatives, we propose that SPO1-like myoviruses are characterized by (i) their infection of gram-positive, low-G+C-content bacteria; (ii) a wide host range within the host bacterial genus and a strictly virulent lifestyle; (iii) similar morphology, sequence relatedness, and collinearity of the phage genome organization; and (iv) large double-stranded DNA genomes featuring nonpermuted terminal repeats of various sizes.  相似文献   

9.
Nucleotide sequence of Bacillus phage Nf terminal protein gene.   总被引:3,自引:1,他引:2       下载免费PDF全文
The nucleotide sequence of Bacillus phage Nf gene E has been determined. Gene E codes for phage terminal protein which is the primer necessary for the initiation of DNA replication. The deduced amino acid sequence of Nf terminal protein is approximately 66% homologous with the terminal proteins of Bacillus phages PZA and luminal diameter 29, and shows similar hydropathy and secondary structure predictions. A serine which has been identified as the residue which covalently links the protein to the 5' end of the genome in luminal diameter 29, is conserved in all three phages. The hydropathic and secondary structural environment of this serine is similar in these phage terminal proteins and also similar to the linking serine of adenovirus terminal protein.  相似文献   

10.
Tu AH  Voelker LL  Shen X  Dybvig K 《Plasmid》2001,45(2):122-126
Mycoplasma virus P1 is one of only four viruses isolated from the genus Mycoplasma. The host for P1, Mycoplasma pulmonis, possesses complex, phase-variable restriction and modification enzymes and the Vsa family of phase-variable surface proteins. The ability of P1 virus to infect host cells is influenced by these phase-variable systems, rendering P1 a valuable tool for assessing host properties. The double-stranded P1 DNA genome was sequenced (11,660 bp) and 11 ORFs were identified. The predicted P1 DNA polymerase is similar to that of phages that are known to have terminal protein (TP) attached to the 5' end of their genome, consistent with previous studies indicating that P1 DNA has covalently attached TP. Most of the other predicted P1 proteins have little sequence similarity to known proteins, and P1 virus is unrelated to the other mycoplasma virus, MAV1, for which the genome sequence is known. One of the predicted P1 proteins, the ORF 8 gene product, contains a repetitive collagen-like motif characteristic of some bacteriophage tail fiber proteins and is a candidate for interacting with the Vsa proteins.  相似文献   

11.
The accumulation of subgenomic phage φ29 DNA molecules with specific sizes was observed after prolonged infection times with delayed lysis phage mutants. Whereas the majority of the molecules had a size of 4 kb, additional DNA species were observed with sizes of 8.2, 6.5, 2.3, 2 and 1 kb. Most of the molecules were shown to originate from the right end of the linear Bacillus subtilis phage φ29 genome. The nature of the 4, 2.3, 2 and 1 kb molecules was studied. The 2 kb molecules were shown to be single-stranded self-complementary strands forming hairpin structures. The other molecules consisted of palindromic linear double-stranded DNA molecules. Most probably, the subgenomic DNA molecules were formed when the moving phage replication fork from the right origin encountered a block that induces the DNA polymerase to switch template. Once formed, the subgenomic molecules are then amplified in vivo . Determination of the centres of symmetry of the 4 and 1 kb molecules revealed that both contained the almost 16 bp perfect dyad symmetry element (DSE): 5'-TGTTtCAC-GTGgAACA-3' being a likely candidate for a protein binding site. Database analysis showed that this sequence occurs four times in the φ29 genome. In addition, the almost identical sequence 5'-TgGTTTCAC-GTGGAAtCA-3' was found once. These five DSEs are all located in the right half of the φ29 genome, and the same sequences are also present in the linear DNA of related B. subtilis phages. Most interestingly, this sequence is also found in the spoOJ gene of the B. subtilis chromosome. Recently, it has been shown that the SpoOJ protein is associated in vivo with the same DSE. As the same subgenomic φ29 DNA molecules accumulate after infection of B. subtilis spoOJ deletion strains, it is likely that, in addition to and/or independently of SpoOJ, other protein(s) bind to DSE.  相似文献   

12.
The complete genome of phiEcoM-GJ1, a lytic phage that attacks porcine enterotoxigenic Escherichia coli of serotype O149:H10:F4, was sequenced and analyzed. The morphology of the phage and the identity of the structural proteins were also determined. The genome consisted of 52,975 bp with a G+C content of 44% and was terminally redundant and circularly permuted. Seventy-five potential open reading frames (ORFs) were identified and annotated, but only 29 possessed homologs. The proteins of five ORFs showed homology with proteins of phages of the family Myoviridae, nine with proteins of phages of the family Podoviridae, and six with proteins of phages of the family Siphoviridae. ORF 1 encoded a T7-like single-subunit RNA polymerase and was preceded by a putative E. coli sigma(70)-like promoter. Nine putative phage promoters were detected throughout the genome. The genome included a tRNA gene of 95 bp that had a putative 18-bp intron. The phage morphology was typical of phages of the family Myoviridae, with an icosahedral head, a neck, and a long contractile tail with tail fibers. The analysis shows that phiEcoM-GJ1 is unique, having the morphology of the Myoviridae, a gene for RNA polymerase, which is characteristic of phages of the T7 group of the Podoviridae, and several genes that encode proteins with homology to proteins of phages of the family Siphoviridae.  相似文献   

13.
14 new transposable phages (TP) were isolated from approx. 200 clinical isolates of Pseudomonas aeruginosa. The frequent occurrence of TP of P. aeruginosa has been confirmed. There are at least two different groups of TP, namely, the group of D3112 and that of B3. The distinctive features of phages belonging to the groups are as follows: 1) low level of DNA-DNA homology (less than 10%), the whole region of homology in phage genomes of different groups being located on right genome end (29-38 kb); only one of phages of the B3 group shows an additional homology with D3112 DNA outside the above mentioned region; 2) a variable DNA is observed on the left end of the B3 group phage genomes and no such DNA is revealed on the left end of genomes of the D3112 group phages; 3) all phages of the B3 group have specific type of interaction with RPL11 plasmid, which distinguish them from phages of the D3112 group; 4) phages belonging to the two groups differ greatly in their growth in cells harbouring pMG7 plasmid which mediates production of PaeR7 endonuclease and in the number of DNA sites sensitive to SalGI, PstI, BglII endonucleases. Since some of the B3 group phage genomes possess BamH1 sites, resistance to this enzyme cannot be regarded as a general characteristics for all TP of P. aeruginosa, as it was earlier proposed. Some aspects of modular hypothesis of bacteriophage evolution concerning, in particular, the ways of module formation are discussed.  相似文献   

14.
A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.  相似文献   

15.
Complete sequence and genomic analysis of murine gammaherpesvirus 68.   总被引:19,自引:13,他引:19       下载免费PDF全文
Murine gammaherpesvirus 68 (gammaHV68) infects mice, thus providing a tractable small-animal model for analysis of the acute and chronic pathogenesis of gammaherpesviruses. To facilitate molecular analysis of gammaHV68 pathogenesis, we have sequenced the gammaHV68 genome. The genome contains 118,237 bp of unique sequence flanked by multiple copies of a 1,213-bp terminal repeat. The GC content of the unique portion of the genome is 46%, while the GC content of the terminal repeat is 78%. The unique portion of the genome is estimated to encode at least 80 genes and is largely colinear with the genomes of Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8), herpesvirus saimiri (HVS), and Epstein-Barr virus (EBV). We detected 63 open reading frames (ORFs) homologous to HVS and KSHV ORFs and used the HVS/KSHV numbering system to designate these ORFs. gammaHV68 shares with HVS and KSHV ORFs homologous to a complement regulatory protein (ORF 4), a D-type cyclin (ORF 72), and a G-protein-coupled receptor with close homology to the interleukin-8 receptor (ORF 74). One ORF (K3) was identified in gammaHV68 as homologous to both ORFs K3 and K5 of KSHV and contains a domain found in a bovine herpesvirus 4 major immediate-early protein. We also detected 16 methionine-initiated ORFs predicted to encode proteins at least 100 amino acids in length that are unique to gammaHV68 (ORFs M1 to 14). ORF M1 has striking homology to poxvirus serpins, while ORF M11 encodes a potential homolog of Bcl-2-like molecules encoded by other gammaherpesviruses (gene 16 of HVS and KSHV and the BHRF1 gene of EBV). In addition, clustered at the left end of the unique region are eight sequences with significant homology to bacterial tRNAs. The unique region of the genome contains two internal repeats: a 40-bp repeat located between bp 26778 and 28191 in the genome and a 100-bp repeat located between bp 98981 and 101170. Analysis of the gammaHV68, HVS, EBV, and KSHV genomes demonstrated that each of these viruses have large colinear gene blocks interspersed by regions containing virus-specific ORFs. Interestingly, genes associated with EBV cell tropism, latency, and transformation are all contained within these regions encoding virus-specific genes. This finding suggests that pathogenesis-associated genes of gammaherpesviruses, including gammaHV68, may be contained in similarly positioned genome regions. The availability of the gammaHV68 genomic sequence will facilitate analysis of critical issues in gammaherpesvirus biology via integration of molecular and pathogenetic studies in a small-animal model.  相似文献   

16.
Lytic Pseudomonas aeruginosa phages LKD16 and LKA1 were locally isolated and morphologically classified as Podoviridae. While LKD16 adsorbs weakly to its host, LKA1 shows efficient adsorption (ka = 3.9 x 10(-9) ml min(-1)). LKA1, however, displays a narrow host range on clinical P. aeruginosa strains compared to LKD16. Genome analysis of LKD16 (43,200 bp) and LKA1 (41,593 bp) revealed that both phages have linear double-stranded DNA genomes with direct terminal repeats of 428 and 298 bp and encode 54 and 56 genes, respectively. The majority of the predicted structural proteins were experimentally confirmed as part of the phage particle using mass spectrometry. Phage LKD16 is closely related to bacteriophage phiKMV (83% overall DNA homology), allowing a more thoughtful gene annotation of both genomes. In contrast, LKA1 is more distantly related, lacking significant DNA homology and showing protein similarity to phiKMV in 48% of its gene products. The early region of the LKA1 genome has diverged strongly from phiKMV and LKD16, and intriguing differences in tail fiber genes of LKD16 and LKA1 likely reflect the observed discrepancy in infection-related properties. Nonetheless, general genome organization is clearly conserved among phiKMV, LKD16, and LKA1. The three phages carry a single-subunit RNA polymerase gene adjacent to the structural genome region, a feature which distinguishes them from other members of the T7 supergroup. Therefore, we propose that phiKMV represents an independent and widespread group of lytic P. aeruginosa phages within the T7 supergroup.  相似文献   

17.
The nucleotide (nt) sequence at the ends of the genomes of the Streptococcus pneumoniae phages Cp-5 and Cp-7 has been determined and compared with the corresponding sequence of phage Cp-1. The genomes of phages Cp-5 and Cp-7 have inverted terminal repeats (ITRs) 343 and 347 bp long, respectively. In Cp-1 DNA the ITR is 236 bp long and the following 116 bp are 93% homologous. Some regions within the ITRs are conserved in the three genomes although the complete sequence of the ITRs is no more conserved than the rest of their genomes. The chromatographic behavior of their tryptic peptides suggests that the terminal proteins (TPs) of at least two of the phages are similar and that the TPs of the three pneumococcal phages differ markedly from that of the Bacillus subtilis phage psi 29.  相似文献   

18.
We have identified a DNA sequence in adenovirus type 16 which contains recognition signals for encapsidation of the viral DNA. The sequence acts in cis to direct the encapsidation of DNA from the end of the viral genome where it is located. The sequence is normally contained in the first 390–400 bp of the left end of the genome. The location was determined by analyzing a series of spontaneous mutants of Ad16 which carried reduplications of 200 to >500 bp of left end sequences at the right end of the genome, thus giving rise to enlarged inverted terminal repetitions (ITR). In plaque-purified (PP) Ad16 prototype virus the subgenomic DNA found in incomplete virus particles exclusively represents left end sequences. When the reduplication mutants were analyzed, we found that a reduplication of about 390 bp enabled subgenomic DNA molecules containing the right end to be encapsidated into incomplete particles as well. A reduplication of about 290 bp, however, did not allow subgenomic DNA containing the right end to be encapsidated. The difference in encapsidation described could not be attributed to an asymetric DNA replication in the mutants, since subgenomic DNA originating from both ends of the genome was produced in equal amounts in the infected cells. We conclude that an essential part of the encapsidation sequence must be located between 290 and 390 bp from the left end of the Ad16 genome.  相似文献   

19.
BackgroundMethicillin resistant Staphylococcus aureus (MRSA) is a pathogen to humans causing life-threatening infections. MRSA have the capability to grow resistance to many antibiotics, and phage therapy is one treatment option for this infection.ObjectivesThe aim of the present study was to isolate and characterize the lytic bacteriophages specific to MRSA from domestic sewage water at a tertiary care hospital in Egypt.MethodsThirty MRSA strains were isolated from different clinical samples admitted to the microbiology lab at Theodor Bilharz Research institute (TBRI) hospital, Giza, Egypt. They were confirmed to be MRSA through phenotypic detection and conventional PCR for mecA gene. They were used for the isolation of phages from sewage water of TBRI hospital. Plaque assay was applied to purify and quantify the titer of the isolated phages. The host range of the isolated phages was detected using the spot test assay. The morphology of phages was confirmed using transmission electron microscope (TEM). Digestion of DNA extracted from phages with endonuclease enzymes including EcoRI and SmaI was performed. SDS-PAGE was performed to analyze MRSA specific phage proteins. As a positive control prophages were isolated from a mitomycin C (MitC) treated culture of S. aureus strain ATCC25923. Further characterization using conventional polymerase chain reaction (PCR) was used to select three known Staphylophages by detecting the endolysin gene of phage K, the polymerase gene of phage 44AHJD, and the minor tail gene of phage P68.ResultsIsolated phages in this research displayed a wide host range against MRSA using the spot test, out of thirty tested MRSA isolates 24 were sensitive and got lysed (80%). The titer of the phages was estimated to be 1.04 × 106 pfu/ml using plaque test. Identification of head and tail morphology of the phages was achieved using TEM and they were designated to tailed phages of order Caudovirales, they composed an icosahedral capsid. Prophages were isolated through MitC induction. DNA of phages was digested by endonuclease enzymes. Conventional PCR yielded 341 bp of phage K endolysin gene and phage P68 minor tail protein gene 501 bp. Protein analysis using SDS-PAGE showed 4 proteins of sizes between 42 kDa and 140 kDa.ConclusionPhages isolated here are alike to others mentioned in previous studies. The high broad host range of the isolated phages is promising to control MRSA and can be in the future commercially suitable for treatment as lysate preparations. Animal models of phage-bacterial interaction will be our next step that may help in resolving the multidrug resistant crisis of MRSA in Egypt.  相似文献   

20.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号