首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

3.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

4.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

5.
Abstract: Coated vesicles (CVs) isolated from bovine striatal tissue were examined to determine whether they are associated with dopamine signal systems consisting of dopamine D1 and D2 receptors, G proteins, and adenylate cyclase. Dopamine receptors in CVs were characterized by a dopamine D1 receptor antagonist, [3H]SCH 23390, and a dopamine D2 receptor antagonist, [3H]-spiroperidol. The bindings of both ligands were specifically saturable and reversible with a dissociation constant ( K D) of 0.65 and 0.5 n M , respectively. Dopaminergic antagonists and agonists inhibited the specific bindings of [3H]SCH 23390 and [3H]spiroperidol in a stereoselective and concentration-dependent manner with an appropriate rank order potency for dopamine D1 or D2 receptors. The regulations of the agonist binding by guanyl-5-ylimidodiphosphate were observed. ADP ribosylation of the CVs with [32P]NAD demonstrated predominant labeling of bands of Mr 47,000–52,000, 42,000–45,000, and 40,000-39,000, which corresponded to the known molecular weights of the α subunits of Gs and Gi proteins. The presence of α and β subunits of G proteins in the CVs was also confirmed by immunoblotting assay. Adenylate cyclase activity, which was stimulated by SKF 38393 and inhibited by dopamine D2 receptor agonists, was present in the CVs. These findings suggest that the dopamine D1 and D2 receptors in the CVs couple with adenylate cyclase via Gs/Gi protein.  相似文献   

6.
The effect of a unilateral perinatal hypoxic-ischemic brain injury on dopamine D1 and D2 receptors and uptake sites was investigated in rats by using in vitro quantitative binding autoradiography, 2-3 weeks after the insult. We observed significant decreases in the Bmax and KD for [3H]SCH 23390-labeled D1 and in the Bmax for [3H]spiperone-labeled D2 receptors in the lesioned caudate-putamen in rats with moderate brain injury (visible loss in hemispheric volume ipsilateral to the injury) compared with the nonlesioned contralateral caudate-putamen or with control rats. Changes in [3H]SCH 23390 and [3H]spiperone binding predominated in the dorsolateral part of the lesioned caudate-putamen. Pronounced reduction in [3H]SCH 23390 binding was also observed in the substantia nigra pars reticulata on the side of the lesion. In contrast, we did not observe any significant change in Bmax or KD for [3H]mazindol-labeled dopamine uptake sites. Similarly, no significant changes in the levels of dopamine or its metabolites were found on the side of the lesion. The observed reductions in striatal dopamine D1 and D2 receptors are a reflection of striatal cell loss induced by the hypoxic-ischemic injury. The absence of changes in [3H]mazindol binding or dopamine levels in the lesioned caudate-putamen indicates that the dopaminergic presynaptic structures are preserved.  相似文献   

7.
The roles of D2 and D1 dopaminergic receptors on the regulation of striatal acetylcholine (ACh) release in vivo were examined for a period of 120 min after acute (2 h) or prolonged (16 h) depletion of brain dopamine (DA) by alpha-methyl-p-tyrosine. The reduction of DA transmission did not affect basal ACh output after 2 h but markedly lowered ACh release by 16 h (50%). Acute alpha-methyl-p-tyrosine pretreatment prevented the reduction of ACh release by the D1 antagonist SCH 23390 and its increase by the D2 antagonist, remoxipride, consistent with a drastic reduction of DA transmission at both DA receptors. However, 16 h after alpha-methyl-p-tyrosine, the effect of remoxipride on ACh release was restored, but SCH 23390 still had no effect, suggesting that the D2 inhibitory tone on ACh release had recovered, whereas the reduction of the D1 facilitatory influence persisted. The D1 facilitatory control of ACh neurotransmission thus appears to be more sensitive than the D2 inhibitory control to a reduction in DA transmission. The new model of DA-ACh interaction resulting from these data casts fresh light on the relationship between changes in DA transmission and extrapyramidal motor function.  相似文献   

8.
The effects of selective D1 and D2 dopaminergic agents on the extracellular acetylcholine (ACh) content in striata of freely moving rats were determined by the microdialysis technique. LY 171555, a selective D2 agonist, reduced ACh output by approximately 30% within 20 min at the dose of 0.2 mg/kg, i.p., whereas the D2 antagonists (-)-remoxipride (10 mg/kg, s.c.) and L-sulpiride (50 mg/kg, i.p.) induced maximal increases of approximately 50% within 10 and 20 min, respectively. In contrast, the D1 antagonist SCH 23390 (0.25 mg/kg, s.c.) decreased the extracellular ACh content by approximately 30% in 20 min, but lower doses--0.025 and 0.05 mg/kg--had no such effect. The stimulation of ACh release by LY 171555 was prevented by (-)-remoxipride but not by SCH 23390 (0.25 mg/kg, s.c.). In addition, the D1 agonist SKF 38393 failed to modify the ACh increasing effect of (-)-remoxipride. Thus, the D1 and D2 receptors subserve opposing functions on ACh release. The D1/D2 dopaminergic agonist R-apomorphine, at the does of 1 mg/kg, i.p., reduced ACh output by approximately 35% only when D1 receptors were blocked by SCH 23390 (0.025 mg/kg, s.c.). The results provide clear in vivo evidence of the tonic inhibition exerted by dopaminergic nigrostriatal input on the cholinergic system of the basal ganglia through D1 and D2 receptors.  相似文献   

9.
The capacity of D1 and D2 agonists and antagonists to regulate the in vivo release and metabolism of dopamine (DA) in mesolimbic and nigrostriatal DA neurons of the mouse was determined using gas chromatographic and mass fragmentographic (GC-MF) analysis. DA release was inferred from levels of 3-methoxytyramine (3-MT) and DA metabolism was inferred from levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). DA release was increased by the D2 antagonists haloperidol and metoclopramide but not by the D1 antagonists SCH 23390 and SKF 83566. DA metabolism was increased by each of the four antagonists but to a greater extent with the D2 antagonists. The D2 agonists CGS 15855A and LY 171555 decreased DA release whereas the D1 agonist SKF 38393, at relatively high doses, only slightly affected DA release. Each of the three agonists decreased DA metabolism but again metabolism was more affected by the D2-selective drugs. The in vivo release of DA from mesolimbic and neostriatal DA neurons appears to be modulated by D2 but not by D1 receptors, whereas both receptor types can modulate DA metabolism.  相似文献   

10.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

11.
Abstract: Pharmacological blockade of either D1 or D2 dopamine (DA) receptors prevents damage of striatal DA terminals by repeated doses of methamphetamine (m-AMPH). Because the substantial DA overflow produced by multiple m-AMPH treatments appears to contribute to the subsequent injury, we have investigated the effects of blockade of D1 or D2 receptors on m-AMPH-induced DA efflux using in vivo microdialysis. Four treatments with m-AMPH (4 mg/kg, s.c., 2-h intervals) produced large increases in striatal DA overflow, with particularly marked overflow (10 times the basal values) following the fourth injection. Administered by themselves, four injections of the D1 antagonist SCH 23390 or the D2 antagonist eticlopride (0.5 mg/kg, i.p., 2-h intervals) significantly increased striatal DA overflow. However, treatment with either SCH 23390 or eticlopride 15 min before each of four m-AMPH injections attenuated the marked DA peak otherwise seen after the fourth m-AMPH injection. These effects on DA overflow were related to subsequent DA depletions. Although our m-AMPH regimen produced a 54% reduction in striatal DA tissue content 1 week later, pretreatments with either the D1 or the D2 antagonist completely prevented subsequent DA content depletions. Furthermore, the DA content of striatal tissue remaining 1 week after m-AMPH treatment was significantly correlated with the magnitude of the cumulative DA overflow during the m-AMPH treatment ( r = -0.69). Thus, the extensive DA overflow seen during neurotoxic regimens of m-AMPH appears critical to the subsequent neurotoxicity, and the neuroprotective action of DA receptor antagonists seems to result from their attenuation of stimulant-induced DA overflow.  相似文献   

12.
D1 and D2 receptor densities in human substantia nigra were examined by use of the specific binding of, respectively, [3H]SCH 23390 [R(+)-7-chloro-8-hydroxy-3-[3H]methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3- benzazepine] and [3H]spiperone. A unilateral loss of striato- and pallidonigral pathways by an infarction (n = 4) had no effect on the ipsilateral nigral D2 receptors, but reduced the ipsilateral nigral D1 receptors by 48-60% compared with the intact side. These data suggest that a substantial fraction of D1 receptors in human substantia nigra is located on terminals of striato- and/or pallidonigral neurons, whereas D2 receptors are confined to intrinsic nigral cells. We also examined the effect of aging on the D1 and D2 receptors in substantia nigra obtained from 25 postmortem human brains (age range 19-88 years). The densities of both receptor types were not affected by the aging process. Since nigrostriatal dopaminergic neurons degenerate with aging, these results suggest either that the nigral D2 receptors are up-regulated in response to a progressive depletion of dopamine in the substantia nigra or that, in contrast to the rat, they are not located on dopaminergic neurons.  相似文献   

13.
Intrastriatal application of the D1 antagonist SCH 23390 by two procedures, reverse dialysis (20 microM) and local injection (0.45 nmol per striatum), elicited a reduction in acetylcholine (ACh) release superimposable on that induced by systemic administration. The novel selective D1 antagonist SCH 39166 produced a similar decreasing effect on striatal ACh release on local injection (0.45 nmol per striatum). On the other hand, local application of SCH 23390 into the frontal cortices (0.45 nmol per side) failed to alter striatal ACh overflow, indicating that the drug does not diffuse out of its injection site to any significant extent. The dopamine release inducer d-amphetamine (2 mg/kg s.c.) and the dopamine uptake inhibitor cocaine raised ACh release like the D1 agonists. These effects were completely blocked by 10 microM SCH 23390 applied by reverse dialysis. The results suggest that D1 receptors regulating ACh release are located in the striatum.  相似文献   

14.
D1 dopamine receptors were identified in membranes of human nucleus caudatus, nucleus accumbens, amygdala, and globus pallidus, by the specific binding of [3H](+)-R-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7 -ol [( 3H]SCH 23390). In these four brain regions, dopamine/[3H]SCH 23390 competition binding curves were computer-analyzed to a two-site model, distinguishing a high- (RH) and low- (RL) affinity site for dopamine. The ability of guanine nucleotides (0.4 mM GTP or 0.1 mM 5'-guanylylimidodiphosphate) to provoke a conversion of RH into RL was different between these brain regions. In amygdala, a complete conversion was seen, whereas there was no guanine nucleotide-effect on RH in globus pallidus. In nucleus caudatus and nucleus accumbens, guanine nucleotides provoked only a partial conversion of RH into RL, suggesting that these brain regions may contain guanine nucleotide-sensitive and -insensitive receptors. Heating of the membranes at 60 degrees C for 5 min had the same effect as guanine nucleotides. The pharmacological profiles of the guanine nucleotide-sensitive and -insensitive D1 receptors were similar, suggesting that D1 receptors in human brain are heterogeneous only with respect to their effector-coupling mechanism: guanine nucleotide-sensitive receptors, which are capable of undergoing functional coupling with Gs, and guanine nucleotide-insensitive receptors, which are not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have synthesized and characterized a series of novel fluorescently labeled ligands with high affinity and specificity for D1 and D2 dopamine receptors. D1-selective probes were synthesized using (R,S)-5-(4'-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl- [1H]-3-benzazepin-7-ol, the 4'-amino derivative of the high-affinity, D1-selective antagonist SCH-23390, whereas D2-selective probes were synthesized using the high-affinity, D2-selective antagonist N-(p-aminophenethyl)spiperone (NAPS). These ligands were coupled via spacer arms of various lengths to the fluorophores fluorescein and bodipy, which fluoresce in the yellow-green region, and to tetramethylrhodamine, which is a red fluorophore. The interaction of these fluorescent ligands with dopamine receptors was evaluated by examining their ability to compete for the binding of the radiolabeled antagonists [3H]SCH-23390 or [3H]methylspiperone to rat striatal D1 or D2 dopamine receptors, respectively. We report here that these novel fluorescent ligands exhibit very high affinity and specificity for either D1 or D2 dopamine receptors. The availability of various fluorescent ligands with different emission maxima and with high affinity and specificity for D1 and D2 dopamine receptors will now permit investigations involving the visualization and localization of these receptor subtypes at the single cell and intracellular levels in the CNS and on intact cells in culture.  相似文献   

16.
The inhibitory GTP-binding protein (Gi) is known to mediate the effects of a number of hormones that act through specific receptors to inhibit adenylate cyclase. In this study we examined the mechanism whereby Gi modulates the response of adenylate cyclase to a stimulatory hormone and its role in desensitization. In membranes prepared from the cultured renal epithelial cell line LLCPK1, adenylate cyclase activity was stimulated 16-fold by 1-2 microM lysine vasopressin. Addition of GTP (1-100 microM) resulted in stimulation of basal activity but inhibition of hormone-stimulated activity (approximately 40% inhibition at 100 microM GTP). This contrasts with the usual effect of GTP to support or augment activation by stimulatory receptors. The inhibitory effect was abolished by pertussis toxin, which had little effect on basal activity in the absence or presence of added GTP or on vasopressin-stimulated activity in the absence of added GTP. GTP-mediated inhibition was vasopressin concentration dependent. At concentrations of vasopressin below the K1/2 for enzyme activation (approximately 0.6 nM), GTP was stimulatory, and at higher concentrations, GTP was inhibitory. The inhibitory effect of GTP was also observed for a V2-receptor agonist and was not abolished by a V1-receptor antagonist, indicating that a distinct V1 receptor did not mediate inhibition of adenylate cyclase. Using the known subunit structure of adenylate cyclase, we developed the minimal mechanism that would incorporate a modulatory role for Gi in determining net activation of adenylate cyclase by a stimulatory hormone. The predicted enzyme activities for basal and maximal hormone stimulation in the presence and absence of GTP were generated, and model parameters were chosen to match the experimental observations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract: This study investigated possible D1/D2 interactions in rat and bovine striatal tissue by examining the effects of D2 antagonists on the action of dopamine at D1 dopamine receptors. In addition, the extent to which D2 antagonists may induce an agonist low-affinity state of the D1 receptor was evaluated in comparison with the effects of the guanine nucleotide analogue 5′-guanylylimidodiphosphate [Gpp(NH)p]. In saturation experiments dopamine caused a dose-dependent decrease in rat striatal and bovine caudate D1 receptor density. This effect of dopamine, which has been shown to be sensitive to Gpp(NH)p, was not altered by pretreatment with either of the selective D2 antagonists eticlopride (200 nM) or domperidone (200 nM). Results from displacement experiments show that the affinity of dopamine for D1 receptors and the proportion of receptors in an agonist high-affinity state, are reduced by Gpp(NH)p (100 µM) but not by eticlopride. A molar excess of dopamine (100 µM) promotes the dissociation of (±)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol ([3H]SCH 23390) from rat striatal D1 receptors at a rate that is significantly slower than when dissociation is initiated using 1 µM piflutixol. After pretreatment with Gpp(NH)p, [3H]SCH 23390 dissociation induced by dopamine occurred at an even slower rate. Pretreatment with eticlopride had no effect on the dopamine-induced rate of [3H]SCH 23390 dissociation. These results indicate that all experimental approaches detected dopamine effects at D1 receptors that are Gpp(NH)p sensitive and D2 antagonist insensitive and provide no evidence to support a D1/D2 link operating at the receptor level.  相似文献   

18.
The tritiated antagonist SCH23390 was used to identify dopamine D1 receptors in the cerebral cortex and neostriatum. The kinetic properties of binding were investigated in parallel experiments with membrane preparations from both tissues. The densities of receptors (Bmax) and the dissociation constants (KD) were determined from saturation curves, and the specificity of binding verified in competition experiments using agonists and antagonists. The cortical D1 receptor displays the same pharmacological selectivity (including stereospecificity) and kinetic properties as the neostriatal D1 receptor. From both the dissociation kinetics by dilution and the competition curves, it could be established that there is an heterogeneity of binding probably due to high- and low-affinity states. Endogenous dopamine, 4-hydroxy-3-methoxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine contents, as well as D1 receptor distribution, were measured for the neostriatum and four localized cortical areas: anterior cingulate, primary somatosensory, primary visual, and piriform-entorhinal. For the regions examined, the distribution of D1 receptors is heterogeneous, but correlates very well (r greater than 0.98) with the endogenous levels of dopamine and its major metabolites.  相似文献   

19.
In developing CNS D1 dopamine receptor-imaging agents with improved specificity and longer brain retention, an iodinated D1 ligand was synthesized. In vitro and in vivo radiolabeling studies of a new iodinated benzazepine, TISCH [7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1H-3- benzazepine], an analog of SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e), were investigated. After an intravenous injection, the R(+) isomer of TISCH showed high brain uptake in rats (2.20 and 0.57% dose per whole brain at 2 and 60 min, respectively). The striatum/cerebellum ratio increased progressively with time (12 at 60 min). Ex vivo autoradiography of rat brain sections, after intravenous injection of R(+)-[125I]TISCH, displayed the highest uptake in striatum and substantia nigra, regions known to have a high concentration of D1 receptors, whereas the S(-) isomer displayed no specific uptake. Furthermore, the specific uptake can be blocked by pretreatment with SCH 23390. In vitro binding studies using the rat striatum tissue preparation showed high specific and low nonspecific bindings (KD = 0.21 +/- 0.03 nM). The rank order of potency exhibiting high specificity to the D1 receptor was SCH 23390 greater than (+/-)-TISCH greater than (+)-butaclamol = (+/-)-FISCH [7-chloro-8-hydroxy-1-(4'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1 H-3-benzazepine] much greater than WB4101 = spiperone greater than dopamine, serotonin, (+/-)-propranolol, and naloxone. Imaging studies in a monkey with the resolved isomer, R(+)-[123I]TISCH, demonstrated a high uptake in the basal ganglia and prolonged retention. The preliminary data suggest that R(+)-TISCH is selective for the CNS D1 receptor and is potentially useful for in vivo and in vitro pharmacological studies. When labeled with iodine-123, it may be suitable for noninvasive imaging in humans.  相似文献   

20.
Abstract: To assess the importance of the cysteine residues Cys347 and Cys351 in the carboxylic tail in the human D1 dopamine receptor, seven mutant receptors were constructed by PCR. The pharmacological and functional properties of the wild-type and mutant receptors were assessed following transient expression in COS-7 cells. Affinities for [3H]SCH 23390 of mutant S347 (Cys347→ Gly), T348 (Tyr348→ stop), S351 (Cys351→ Gly), T351 (Cys351→ stop), T352 (Pro352→ stop), and S347/S351 (Cys347→ Gly and Cys351→ Gly) were similar to that of wild-type receptor, whereas the expression levels were reduced up to 80%. The potency of dopaminergic antagonists for these mutant receptors was very similar to that of the wild-type receptor. However, mutant T347 (Cys347→ stop) showed a 15–25-fold reduced affinity for the antagonists SCH 23390, (+)-butaclamol, and cis-flupentixol, thus not allowing radioligand analysis. Wild-type and mutant receptors responded dose-dependently with similar potency to dopamine and SKF 38393 with an increased adenylyl cyclase activity. However, mutant receptors with the Cys347 residue changed or removed displayed a diminished ability to activate adenylyl cyclase. Dopamine preexposure desensitized wild-type and mutant S351 receptors. However, mutant receptors with Cys347 replaced or the distal part of the carboxyl tail removed were unable to desensitize. Thus, Cys347 in the cytoplasmic tail of the human D1 dopamine receptor is important for the receptor in maintaining the conformation for antagonist binding, to play a crucial role in activation of adenylyl cyclase, and to be essential for agonist-induced desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号