共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Neural tube defects (NTDs) are severe congenital malformations affecting 1-2 in 1,000 live births, whose etiology is multifactorial, involving environmental and genetic factors. NTDs arise as consequence of the failure of fusion of the neural tube early during embryogenesis. NTDs' pathogenesis has been linked to genes involved in folate metabolism, consistent with an epidemiologic evidence that 70% of NTDs can be prevented by maternal periconceptional supplementation. However, polymorphisms in such genes are not linked in all populations, suggesting that other genetic factors and environmental factors could be involved. Animal models have provided crucial mechanistic information and possible candidate genes to explain susceptibility to NTDs. A crucial role has been assigned to the planar cell polarity (PCP) pathway, a highly conserved, non-canonical Wnt-frizzled-dishevelled signaling cascade that plays a key role in establishing and maintaining polarity in the plane of the epithelium and in the process of convergent extension during gastrulation and neurulation in vertebrates. The Loop-tail (Lp) mouse that develops craniorachischisis carry missense mutations in the PCP core gene Vangl2, that is the mammalian homolog of the Drosophila Strabismus/Van gogh (Stbm/Vang). The presence of mutations in human VANGL1 and VANGL2 genes encourages us to extend the investigation to other PCP genes that, with VANGL, play an essential role in neurulation during development. 相似文献
3.
T Franz 《Teratology》1992,46(6):599-604
Homozygous Splotch mutant mice (Sp/Sp) die on day 14 of gestation with neural tube defects, curly tail, and malformations of neural crest derivatives. Sp1H mice, which have a radiation-induced allele of Splotch with a similar phenotype, were used for this study. The neural tube defects are always located in the lumbosacral region and in 50% of the cases also in the region of the hindbrain. In this report, rare cases of neural tube defects and tail defects among the offspring of crosses between Splotch (Sp1H) heterozygotes are presented, which are not associated with a neural crest defect. This suggests that the development of the neural tube and neural crest defects in this mutant is caused by independent mechanisms or is dependent on the dosage of the mutant gene, with different thresholds being pathogenetic in the neural tube and neural crest, respectively. 相似文献
4.
Strain differences in heat-induced neural tube defects in mice 总被引:4,自引:0,他引:4
Neural tube defects are common congenital anomalies affecting approximately 0.1% of liveborn infants. It is widely accepted that these disorders are of a multifactorial origin, having both a genetic and an environmental component to their development. In a study designed to elucidate the genetic factors involved in a mouse model of hyperthermia-induced neural tube defects, it is apparent that a hierarchy of susceptibility exists among various inbred mouse strains. Female SWV mice were extremely sensitive to a 10-minute hyperthermic treatment on day 8.5 of gestation, with 44.3% of their offspring having exencephaly. The other strains used in these studies (LM/Bc, SWR/J, C57BL/6J, and DBA/2J) all had less than 14% affected offspring. In experimental situations where the environment is held constant and the only difference between the strains is their genotype, it is assumed that the difference in response to a teratogen is genetically mediated. To test the hypothesis that several genes are involved, reciprocal crosses were made between strains of high, moderate, and low sensitivity. When this was done, the high sensitivity of the SWV strain was lost in the F1 hybrid, implying not only that multiple genes are involved, but that it is the embryo's genotype and not the maternal genotype that is the major factor in determining susceptibility to heat-induced neural tube defects. 相似文献
5.
6.
7.
In the mouse, the loop-tail mutation (Lp) causes a very severe neural tube defect, which is caused by mutations in the Vangl2 gene. In mammals, Vangl1 and Vangl2 code for integral membrane proteins that assemble into asymmetrically distributed membrane complexes that establish planar cell polarity in epithelial cells and that regulate convergent extension movements during embryogenesis. To date, VANGL are the only genes in which mutations cause neural tube defects in humans. Three independently arising Lp alleles have been described for Vangl2: D255E, S464N, and R259L. Here we report a common mechanism for both the naturally occurring Lp (S464N) and a novel ENU-induced mutation Lp(m2Jus)(R259L). We show that the S464N and R259L variants stably expressed in polarized MDCK kidney cells fail to reach the plasma membrane, their site for biological function. The mutant variants are retained intracellularly in the endoplasmic reticulum, colocalizing with ER chaperone calreticulin. Furthermore, the mutants also show a dramatically reduced half-life of ~3 h, compared to ~22 h for the wild-type protein, and are rapidly degraded in a proteasome-dependent and MG132-sensitive fashion. Coexpressing individually the three known allelic Lp variants with the wild-type protein does not influence the localization of the WT at the plasma membrane, suggesting that the codominant nature of the Lp trait in vivo is due to haploid insufficiency caused by a partial loss of function in a gene dosage-dependent pathway, as opposed to a dominant negative phenotype. Our study provides a biochemical framework for the study of recently identified mutations in hVANGL1 and hVANGL2 in sporadic or familial cases of neural tube defects. 相似文献
8.
Li D Pickell L Liu Y Rozen R 《Birth defects research. Part A, Clinical and molecular teratology》2006,76(1):55-59
BACKGROUND: The etiology of neural tube defects (NTDs) is multifactorial, with environmental and genetic determinants. Folate supplementation prevents the majority of NTDs, and a polymorphism in methylenetetrahydrofolate reductase (MTHFR) has become recognized as a genetic risk factor. The mechanisms by which folate affects NTD development are unclear. The Splotch (Sp) mouse is a well-characterized mouse model for studying spontaneous NTDs. To assess the potential interaction between folate metabolism and the Sp mutant in NTD development, we studied mice with both Sp and Mthfr mutations, as well as the interaction between Sp and low dietary folate. METHODS: Wild-type, single Mthfr+/-mutant, single Sp/+mutant, and double mutant (Mthfr+/-, Sp/+) female mice were mated with males of the same genotype. Embryos were examined for NTDs on gestational day (GD) 13.5. To investigate the effects of folate deficiency on Sp mice, Sp/+female mice were fed a control diet (CD), a moderately folic acid-deficient diet (MFADD), or a severely folic acid-deficient diet (SFADD). They were mated with Sp/+males and the embryos were examined. RESULTS: There were no differences in the incidence or severity of NTDs in embryos from double-mutant mating pairs compared to those from single Sp mutants. Embryos from Mthfr+/-dams did not exhibit NTDs. Diets deficient in folate did not influence the incidence or severity of NTDs in embryos from Sp/+mice. CONCLUSIONS: We did not observe an interaction between Sp and Mthfr mutations, or between the Sp mutation and low dietary folate, in NTD development in Splotch mice. 相似文献
9.
Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives 总被引:1,自引:0,他引:1
Inoue T Hatayama M Tohmonda T Itohara S Aruga J Mikoshiba K 《Developmental biology》2004,270(1):146-162
Zic family genes encode zinc finger proteins, which are homologues of the Drosophila pair-rule gene odd-paired. In the present study, we characterized the fifth member of the mouse Zic family gene, mouse Zic5. Zic5 is located near Zic2, which is responsible for human brain malformation syndrome (holoprosencephaly, or HPE). In embryonic stages, Zic5 was expressed in dorsal part of neural tissues and limbs. Expression of Zic5 overlapped with those of other Zic genes, most closely with Zic2, but was not identical. Targeted disruption of Zic5 resulted in insufficient neural tube closure at the rostral end, similar to that seen in Zic2 mutant mice. In addition, the Zic5-deficient mice exhibited malformation of neural-crest-derived facial bones, especially the mandible, which had not been observed in other Zic family mutants. During the embryonic stages, there were delays in the development of the first branchial arch and extension of the trigeminal and facial nerves. Neural crest marker staining revealed fewer neural crest cells in the dorsal cephalic region of the mutant embryos without significant changes in their migration. When mouse Zic5 was overexpressed in Xenopus embryos, expression of a neural crest marker was enhanced. These findings suggested that Zic5 is involved in the generation of neural crest tissue in mouse development. ZIC5 is also located close to ZIC2 in humans, and deletions of 13q32, where ZIC2 is located, lead to congenital brain and digit malformations known as the "13q32 deletion syndrome". Based on both their similar expression pattern in mouse embryos and the malformations observed in Zic5-deficient mutant mice, human ZIC5 might be involved in the deletion syndrome. 相似文献
10.
M L Tyan 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1992,200(4):487-489
Pregnant mice congenic with C57BL/10 (B10.A, B10.BR, B10.D2, B10.A[2R], B10.A[5R], B10.A[15Rd, B10.A[1R], B10.A[18R], and B10.0L) were fed Purina Mouse Chow or the same diet plus 200 IU of vitamin A daily. The pregnant dams were sacrificed on the eighteenth day of gestation, and the fetuses were sexed and examined for defects in neural tube development. The frequency of neural tube defects was low (mean frequency of all strains, 0.36%) and was not affected by the addition of vitamin A (200 IU/day) to the diet. Twenty-seven of the 29 defects observed occurred in the anterior tube (exencephaly); fourteen were identified in female fetuses, but the sex could not be determined in the other 15 cases because of fetal death and early autolysis. Variations in frequency among the strains suggest that a locus between E beta and H-2D has a moderate influence on the occurrence of neural tube defects. Strains that had H-2d alleles in this segment of the H-2 complex had relatively high frequencies, and those with H-2b or H-2k alleles had significantly lower frequencies. 相似文献
11.
Laura Harmacek Dawn E. Watkins‐Chow Jianfu Chen Kenneth L. Jones William J. Pavan J. Michael Salbaum Lee Niswander 《Developmental neurobiology》2014,74(5):483-497
Failure of embryonic neural tube closure results in the second most common class of birth defects known as neural tube defects (NTDs). While NTDs are likely the result of complex multigenic dysfunction, it is not known whether polymorphisms in epigenetic regulators may be risk factors for NTDs. Here we characterized Baf155msp3, a unique ENU‐induced allele in mice. Homozygous Baf155mps3 embryos exhibit highly penetrant exencephaly, allowing us to investigate the roles of an assembled, but malfunctional BAF chromatin remodeling complex in vivo at the time of neural tube closure. Evidence of defects in proliferation and apoptosis were found within the neural tube. RNA‐Seq analysis revealed that surprisingly few genes showed altered expression in Baf155 mutant neural tissue, given the broad epigenetic role of the BAF complex, but included genes involved in neural development and cell survival. Moreover, gene expression changes between individual mutants were variable even though the NTD was consistently observed. This suggests that inconsistent gene regulation contributes to failed neural tube closure. These results shed light on the role of the BAF complex in the process of neural tube closure and highlight the importance of studying missense alleles to understand epigenetic regulation during critical phases of development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 483–497, 2014 相似文献
12.
13.
Caroline Miles 《BMJ (Clinical research ed.)》1985,290(6474):1080
14.
Harris MJ Juriloff DM 《Birth defects research. Part A, Clinical and molecular teratology》2007,79(3):187-210
BACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS: The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS: Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS: If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain. 相似文献
15.
Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice 总被引:2,自引:0,他引:2
Okada A Kushima K Aoki Y Bialer M Fujiwara M 《Birth defects research. Part A, Clinical and molecular teratology》2005,73(4):229-238
BACKGROUND: Valproic acid (VPA) causes the failure of neural tube closure in newborn mice. However, the molecular mechanism of its teratogenesis is unknown. This study was conducted to investigate the genomewide effects of VPA disruption of normal neural tube development in mice. METHODS: Microarray analysis was performed on the head part of NMRI mouse embryos treated for 1 hr with VPA on gestational day (GD) 8. Subsequently, we attempted to isolate genes that changed in correlation with the teratogenic action of VPA by employing reduced teratogenic VPA analogs, valpromide (VPD) and valnoctamide (VCD), in a real-time PCR study. RESULTS: Microarray results demonstrated that during neurulation, many genes, some of whose functions are known and some unknown, were either increased or decreased after VPA injection. Some genes were affected by VPD or VCD in the same way as VPA, but others were not changed by the analogs. In this way, our system identified 11 increased and 20 decreased genes. Annotation analysis revealed that the increased genes included gadd45b, ier5, per1, phfl3, pou3f1, and sox4, and the decreased genes included ccne2, ccnl, gas5, egr2, sirt1, and zfp105. CONCLUSIONS: These findings demonstrate that expression changes in genes having roles in the cell cycle and apoptosis pathways of neural tube cells were strongly expected to relate to the teratogenic, but not antiepileptic, activity of VPA. Our approach has allowed the expansion of the catalog of molecules immediately affected by VPA in the developing neural tube. 相似文献
16.
Mini-review: toward understanding mechanisms of genetic neural tube defects in mice. 总被引:13,自引:0,他引:13
We review the data from studies of mouse mutants that lend insight to the mechanisms that lead to neural tube defects (NTDs). Most of the 50 single-gene mutations that cause neural tube defects (NTDs) in mice also cause severe embryonic-lethal syndromes, in which exencephaly is a nonspecific feature. In a few mutants (e.g., Trp53, Macs, Mlp or Sp), other defects may be present, but affected fetuses can survive to birth. Multifactorial genetic causes, as are present in the curly tail stock (15-20% spina bifida), or the SELH/Bc strain (15-20% exencephaly), lead to nonsyndromic NTDs. The mutations indicate that "spina bifida occulta," a dorsal gap in the vertebral arches over an intact neural tube, is usually genetically and developmentally unrelated to exencephaly or "spina bifida" (aperta). Almost all exencephaly or spina bifida aperta of genetic origin is caused by failure of neural fold elevation. The developmental mechanisms in genetic NTDs are considered in terms of distinct rostro-caudal zones along the neural folds that likely differ in mechanism of elevation. Failure of elevation leads to: split face (zone A), exencephaly (zone B), rachischisis (all of zone D), or spina bifida (caudal zone D). The developmental mechanisms leading to these genetic NTDs are heterogeneous, even within one zone. At the tissue level, the mutants show that the mechanism of failure of elevation can involve, e.g., (1) slow growth of adjacent tethered tissue (curly tail), (2) defective forebrain mesenchyme (Cart1 or twist), (3) defective basal lamina in surface ectoderm (Lama5), (4) excessive breadth of floorplate and notochord (Lp), (5) abnormal neuroepithelium (Apob, Sp, Tcfap2a), (6) morphological deformation of neural folds (jmj), (7) abnormal neuroepithelial and neural crest cell gap-junction communication (Gja1), or (8) incomplete compensation for a defective step in the elevation sequence (SELH/Bc). At the biochemical level, mutants suggest involvement of: (1) faulty regulation of apoptosis (Trp53 or p300), (2) premature differentiation (Hes1), (3) disruption of actin function (Macs or Mlp), (4) abnormal telomerase complex (Terc), or (5) faulty pyrimidine synthesis (Sp). The NTD preventative effect of maternal dietary supplementation is also heterogeneous, as demonstrated by: (1) methionine (Axd), (2) folic acid or thymidine (Sp), or (3) inositol (curly tail). The heterogeneity of mechanism of mouse NTDs suggests that human NTDs, including the common nonsyndromic anencephaly or spina bifida, may also reflect a variety of genetically caused defects in developmental mechanisms normally responsible for elevation of the neural folds. 相似文献
17.
18.
Summary A survey is made of the epidemiologic studies of neural tube defects (NTD) in Germany. A temporary increase is noted in the prevalence of NTD at birth for the time during and shortly after the Second World War, followed by a downward trend thereafter. Thus an earlier observation of Lenz (1965) could be confirmed. Falling rates of NTD were also reported from various other countries in recent years. No convincing etiological explanation is available so far. The current prevalence of NTD at birth can be estimated for Germany to be about 1.0–1.5 per thousand newborns with about an even distribution to anencephalus and spina bifida. 相似文献
19.
Genetic heterogeneity in neural tube defects. 总被引:1,自引:0,他引:1
J L Simpson J Mills G G Rhoads G C Cunningham M R Conley H J Hoffman 《Annales de génétique》1991,34(3-4):279-286
In 1985-1987, the authors attempted to ascertain all cases of confirmed neural tube defects (NTD) in California and Illinois, not only among live-born infants (postnatal) but also cases ascertained during pregnancy (prenatal). Mothers of both prenatal and postnatal NTD cases were interviewed within 5 months. Among postnatal NTD cases, 14.9% (45/303) had anomalies not ordinarily associated with NTD. The frequency of non-NTD related anomalies was 9.4% (5/53) in anencephaly, 0/3 in craniorachischisis, 22.9% (8/35) in encephalocele, 14.5% (27/186) in spina bifida, 20% (1/5) in multiple NTD cases and 19% (4/21) in other NTDs. However, relatively few postnatal NTD cases had known multiple malformation patterns; Meckel-Gruber syndrome was the most common, with 2 postnatal cases, and 3 additional prenatal cases. Maternal age, paternal age and birth order in postnatal cases were 26.7 +/- 5.4 SD, 28.9 +/- 5.8 and 2.8 +/- 1.8, respectively. These characteristics were similar in prenatal NTD cases (27.9 +/- 6.0, 30.1 +/- 6.3, 2.5 +/- 1.5, respectively). We also found no differences in parental ages among different types of NTD. Frequency of prior spontaneous abortion differed neither between postnatal NTD (9.3%) and postnatal controls (8.1%), nor between prenatal NTD (10.7%) and prenatal control (8.7%). Loss rates in the pregnancy immediately prior to the index NTD cases were not significantly higher than in control subjects. The high frequency of non-NTD associated malformations (14.9%) indicates the caution must be exercised before assuming that a given NTD case is polygenic-multifactorial in etiology, especially cases of encephalocele. 相似文献
20.
Kalter H 《Birth defects research. Part A, Clinical and molecular teratology》2003,67(7):529; author reply 530-529