首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xie G  Gross AK  Oprian DD 《Biochemistry》2003,42(7):1995-2001
This report describes the biochemical characterization of a double mutant of rhodopsin (N2C,D282C) in which Cys residues engineered into the protein at positions 2 (in the amino-terminal extracellular domain) and 282 (in the extracellular loop between transmembrane helices 6 and 7) are shown to form a disulfide bond and increase the thermal stability of the unliganded or opsin form of the protein. Wild-type opsin does not survive detergent solubilization and purification at pH 7.5 and 25 degrees C. In contrast, the N2C,D282C mutant opsin survives the purification protocol and loses less than 50% activity after incubation for 20 days under the same conditions. Less than 5% is lost after 20 days at 4 degrees C. While the disulfide bond clearly has a dramatic effect on protein stability, it has a minor impact on the activity of the pigment. The MII lifetime of the mutant (6.6 min) is similar to that of the wild type (7.9 min), and the specific activity of the light-activated mutant for activation of transducin is within 20% of the wild-type activity. Therefore, it seems likely that the disulfide bond does not perturb greatly the structure of the protein. For these reasons, we anticipate that the mutant may be of use in detailed kinetic and mechanistic investigations of the ligand binding reaction and for crystallization trials involving recombinant rhodopsin, especially the unliganded opsin form of the protein.  相似文献   

2.
Autosomal dominant retinitis pigmentosa (ADRP) mutants (T4K, N15S, T17M, V20G, P23A/H/L, and Q28H) in the N-terminal cap of rhodopsin misfold when expressed in mammalian cells. To gain insight into the causes of misfolding and to define the contributions of specific residues to receptor stability and function, we evaluated the responses of these mutants to 11-cis-retinal pharmacological chaperone rescue or disulfide bond-mediated repair. Pharmacological rescue restored folding in all mutants, but the purified mutant pigments in all cases were thermo-unstable and exhibited abnormal photobleaching, metarhodopsin II decay, and G protein activation. As a complementary approach, we superimposed this panel of ADRP mutants onto a rhodopsin background containing a juxtaposed cysteine pair (N2C/D282C) that forms a disulfide bond. This approach restored folding in T4K, N15S, V20G, P23A, and Q28H but not T17M, P23H, or P23L. ADRP mutant pigments obtained by disulfide bond repair exhibited enhanced stability, and some also displayed markedly improved photobleaching and signal transduction properties. Our major conclusion is that the N-terminal cap stabilizes opsin during biosynthesis and contributes to the dark-state stability of rhodopsin. Comparison of these two restorative approaches revealed that the correct position of the cap relative to the extracellular loops is also required for optimal photochemistry and efficient G protein activation.  相似文献   

3.
Ab initio (RHF, MP2) and Density Functional Theory (DFT) methods have been used to examine six isomers of the N15m cluster with the 6-31+G* basis set. Different from the known odd-numbered anionic N7m, N9m, and N11m clusters, in which the open-chain structures are the most stable species, the most stable N15m isomer is structure 1 (C1), which may be considered as a complex between the fragments cyclic N5m (D5h) and staggered N10 (D2d). The decomposition pathways of structure 2 (CS), containing two aromatic N5 rings connected by a N5 chain, and the open-chain structure 3 (C2v) were studied at the B3LYP/6-31+G* level of theory. Relative energies were refined at the level of B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*). The barriers for N2 and N5m (D5h) fission reactions for structure 2 are predicted to be 18.2 and 14.2 kcal x mol(-1), respectively. The corresponding N2+N3m fission barrier for structure 3 is predicted to be 11.2 kcal x mol(-1). Supplementary material is available for this article if you access the article at http://dx.doi.org/10.1007/s00894-003-0118-0. A link in the frame on the left on that page takes you directly to the supplementary material. Figure Structure 1 of the N15m cluster, showing bond distances in A and bond angles in degrees  相似文献   

4.
Previous studies of constitutively activated mutants of opsin in the absence of chromophore were carried out in crude cell membranes because such mutants could not be recovered in a detergent-solubilized form in the active state. We employed a strategy in which a stabilizing disulfide bond allowed for successful purification of a constitutively activated mutant opsin, N2C/E113Q/M257Y/D282C, solubilized in nonionic detergent from mammalian cell culture. The purified mutant opsin is able to activate transducin to a higher degree than opsin and may prove useful for future structural studies of the active state of GPCRs.  相似文献   

5.
We describe in molecular detail how disruption of an intermonomer salt bridge (Arg337-Asp352) leads to partial destabilization of the p53 tetramerization domain and a dramatically increased propensity to form amyloid fibrils. At pH 4.0 and 37 degrees C, a p53 tetramerization domain mutant (p53tet-R337H), associated with adrenocortical carcinoma in children, readily formed amyloid fibrils, while the wild-type (p53tet-wt) did not. We characterized these proteins by equilibrium denaturation, 13C(alpha) secondary chemical shifts, (1H)-15N heteronuclear NOEs, and H/D exchange. Although p53tet-R337H was thermodynamically less stable, NMR data indicated that the two proteins had similar secondary structure and molecular dynamics. NMR derived pK(a) values indicated that at low pH the R337H mutation partially disrupted an intermonomer salt bridge. Backbone H/D exchange results showed that for at least a small population of p53tet-R337H molecules disruption of this salt bridge resulted in partial destabilization of the protein. It is proposed that this decrease in p53tet-R337H stability resulted in an increased propensity to form amyloid fibrils.  相似文献   

6.
Cysteine residues 110 and 187 are essential for the formation of the correct bovine rhodopsin structure (Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8459-8463). We now show that the sulfhydryl groups of these 2 cysteine residues interact to form a disulfide bond. Rhodopsin mutants containing cysteine----serine substitutions were prepared as follows. In one mutant, CysVII, all the 10 cysteine residues of rhodopsin were replaced by serines. A second mutant, CysVIII, contained only C110 and C185; a third mutant, CysIX, contained only C185 and C187 while the fourth mutant, CysX, contained only C110 and C187. Only mutant CysX formed functional rhodopsin. Mutants CysVIII and CysIX reacted with [3H]iodoacetic acid showing the presence of free sulfhydryl groups while mutant CysX was inert to this reagent. CysX reacted with cyanide ion to form a thiocyanate derivative showing the presence of a disulfide bond. The C110-C187 disulfide bond is buried in rhodopsin because reactions with disulfide reducing agents and cyanide ion require prior treatment with denaturants.  相似文献   

7.
The solution structure of oxidized bovine microsomal cytochrome b(5) mutant (E48, E56/A, D60/A) has been determined through 1524 meaningful nuclear Overhauser effect constraints together with 190 pseudocontact shift constraints. The final family of 35 conformers has rmsd values with respect to the mean structure of 0.045+/-0.009 nm and 0.088+/-0.011 nm for backbone and heavy atoms, respectively. A characteristic of this mutant is that of having no significant changes in the whole folding and secondary structure compared with the X-ray and solution structures of wild-type cytochrome b(5). The binding of different surface mutants of cytochrome b(5) with cytochrome c shows that electrostatic interactions play an important role in maintaining the stability and specificity of the protein complex formed. The differences in association constants demonstrate the electrostatic contributions of cytochrome b(5) surface negatively charged residues, which were suggested to be involved in complex formation in the Northrup and Salemme models, have cumulative effect on the stability of cyt c-cyt b(5) complex, and the contribution of Glu48 is a little higher than that of Glu44. Moreover, our result suggests that the docking geometry proposed by Northrup, which is involved in the participation of Glu48, Glu56, Asp60, and heme propionate of cytochrome b(5), do occur in the association between cytochrome b(5) and cytochrome c.  相似文献   

8.
Conformational thermostabilisation of G-protein-coupled receptors is a successful strategy for their structure determination. The thermostable mutants tolerate short-chain detergents, such as octylglucoside and nonylglucoside, which are ideal for crystallography, and in addition, the receptors are preferentially in a single conformational state. The first thermostabilised receptor to have its structure determined was the β1-adrenoceptor mutant β1AR-m23 bound to the antagonist cyanopindolol, and recently, additional structures have been determined with agonist bound. Here, we describe further stabilisation of β1AR-m23 by the addition of three thermostabilising mutations (I129V, D322K, and Y343L) to make a mutant receptor that is 31 °C more thermostable than the wild-type receptor in dodecylmaltoside and is 13 °C more thermostable than β1AR-m23 in nonylglucoside. Although a number of thermostabilisation methods were tried, including rational design of disulfide bonds and engineered zinc bridges, the two most successful strategies to improve the thermostability of β1AR-m23 were an engineered salt bridge and leucine scanning mutagenesis. The three additional thermostabilising mutations did not significantly affect the pharmacological properties of β1AR-m23, but the new mutant receptor was significantly more stable in short-chain detergents such as heptylthioglucoside and denaturing detergents such as SDS.  相似文献   

9.
Escherichia coli pH 2.5 acid phosphatase gene (appA) and three mutants were expressed in Pichia pastoris to assess the effect of strategic mutations or deletion on the enzyme (EcAP) biochemical properties. Mutants A131N/ V134N/D207N/S211N, C200N/D207N/S211N, and A131N/ V134N/C200N/D207N/S211N had four, two, and four additional potential N-glycosylation sites, respectively. Extracellular phytase and acid phosphatase activities were produced by these mutants and the intact enzyme r-AppA. The N-glycosylation level was higher in mutants A131N/V134N/D207N/S211N (48%) and A131N/V134N/ C200N/D207N/S211N (89%) than that in r-AppA (14%). Despite no enhancement of glycosylation, mutant C200N/ D207N/S211N was different from r-AppA in the following properties. First, it was more active at pH 3.5-5.5. Second, it retained more (P < 0.01) phytase activity than that of r-AppA. Third, its specific activity of phytase was 54% higher. Lastly, its apparent catalytic efficiency kcat/Km for either p-nitrophenyl phosphate (5.8 x 10(5) vs 2.0 x 10(5) min(-1) M(-1)) or sodium phytate (6.9 x 10(6) vs 1.1 x 10(6) min(-1) M(-1)) was improved by factors of 1.9- and 5.3-fold, respectively. Based on the recently published E. coli phytase crystal structure, substitution of C200N in mutant C200N/D207N/S211N seems to eliminate the disulfide bond between the G helix and the GH loop in the alpha-domain of the protein. This change may modulate the domain flexibility and thereby the catalytic efficiency and thermostability of the enzyme.  相似文献   

10.
Six mutant strains of Rhizobium were isolated after UV treatment which could exhibit nitrogenase activity in Burk's N-free medium without any supplement. The activity ranged between 99.5 and 113 nmol/mg cell dry weight and hour. Two of the parent strains belonged to soybean, and one each to mungbean and Sesbania sp. Both the parent and mutant strains exhibited nitrogenase activity in CS 7 medium. One of the mutants retained its capacity to produce nodules on soybean roots.List of Abbreviations C.D. Critical difference - EMS ethylmethane sulphonate - NTG N-methyl-N-nitro, N-nitrosoguanidine  相似文献   

11.
Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid.  相似文献   

12.
Adenylosuccinate lyase (ASL) of Bacillus subtilis contains three conserved histidines, His(68), His(89), and His(141), identified by affinity labeling and site-directed mutagenesis as critical to the intersubunit catalytic site. The pH-V(max) profile for wild-type ASL is bell-shaped (pK (1) = 6.74 and pK (2) = 8.28). Only the alkaline side changes with temperature, characteristic of histidine pKs. To identify determinants of pK (2) in the enzyme-substrate complex, we replaced residues at two positions close to His(68) (but not to His(89) or His(141)) in the structure. Compared with the specific activity of 1.75 mumol adenylosuccinate reacting/min/mg of wild-type enzyme at pH 7.0, mutant enzymes D69E, D69N, R310Q, and R310K exhibit specific activities of 0.40, 0.04, 0.00083, and 0.10, respectively. While D69E has a K (m) for adenylosuccinate similar to that of wild-type ASL, D69N and R310K exhibit modest increases in K (m), and R310Q has an 11-fold increase in K (m). The mutant enzymes show no significant change in molecular weight or secondary structure. The major change is in the pH-V(max) profile: pK (2) is 8.48 for the D69E mutant and is decreased to 7.83 in D69N, suggesting a proximal negative charge is needed to maintain the high pK of 8.28 observed for wild-type enzyme and attributed to His(68). Similarly, R310Q exhibits a decrease in its pK (2) (7.33), whereas R310K shows little change in pK (2) (8.24). These results suggest that Asp(69) interacts with His(68), that Arg(310) interacts with and orients the beta-carboxylate of Asp(69), and that His(68) must be protonated for ASL to be active.  相似文献   

13.
In this work we compare the dynamics and conformational stability of Pseudomonas mendocina lipase enzyme and its F180P/S205G mutant that shows higher activity and stability for use in washing powders. Our NMR analyses indicate virtually identical structures but reveal remarkable differences in local dynamics, with striking correspondence between experimental data (i.e., (15)N relaxation and H/D exchange rates) and data from Molecular Dynamics simulations. While overall the cores of both proteins are very rigid on the pico- to nanosecond timescale and are largely protected from H/D exchange, the two point mutations stabilize helices alpha1, alpha4, and alpha5 and locally destabilize the H-bond network of the beta-sheet (beta7-beta9). In particular, it emerges that helix alpha5, undergoing some fast destabilizing motions (on the pico- to nanosecond timescale) in wild-type lipase, is substantially rigidified by the mutation of Phe180 for a proline at its N terminus. This observation could be explained by the release of some penalizing strain, as proline does not require any "N-capping" hydrogen bond acceptor in the i+3 position. The combined experimental and simulated data thus indicate that reduced molecular flexibility of the F180P/S205G mutant lipase underlies its increased stability, and thus reveals a correlation between microscopic dynamics and macroscopic thermodynamic properties. This could contribute to the observed altered enzyme activity, as may be inferred from recent studies linking enzyme kinetics to their local molecular dynamics.  相似文献   

14.
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110–Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185–Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185–Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.  相似文献   

15.
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor''s active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin''s thermal stability and RP progression in patients.  相似文献   

16.
The native form of serpins (serine protease inhibitors) is a metastable conformation, which converts into a more stable form upon complex formation with a target protease. It has been suggested that movement of helix-F (hF) and the following loop connecting to strand 3 of beta-sheet A (thFs3A) is critical for such conformational change. Despite many speculations inferred from analysis of the serpin structure itself, direct experimental evidence for the mobilization of hF/thFs3A during the inhibition process is lacking. To probe the mechanistic role of hF and thFs3A during protease inhibition, a disulfide bond was engineered in alpha(1)-antitrypsin, which would lock the displacement of thFs3A from beta-sheet A. We measured the inhibitory activity of each disulfide-locked mutant and its heat stability against loop-sheet polymerization. Presence of a disulfide between thFs3A and s5A but not between thFs3A and s3A caused loss of the inhibitory activity, suggesting that displacement of hF/thFs3A from strand 5A but not from strand 3A is required during the inhibition process. While showing little influence on the inhibitory activity, the disulfide between thFs3A and s3A retarded loop-sheet polymerization significantly. This successful protein engineering of alpha(1)-antitrypsin is expected to be of value in clinical applications. Based on our current studies, we propose that the reactive-site loop of a serpin glides through between s5A and thFs3A for the full insertion into beta-sheet A while a substantial portion of the interactions between hF and s3A is kept intact.  相似文献   

17.
The three-dimensional structures of the long-chain mammalian scorpion β-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/β fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Nav channels.  相似文献   

18.
Cyanovirin-N (CVN) is a novel cyanobacterial protein that selectively binds with nanomolar affinities the mammalian oligosaccharides Man(8) and Man(9). Consequently, CVN potently blocks HIV entry through highly avid carbohydrate-mediated interactions with the HIV-envelope glycoprotein gp120, and is under preclinical investigation as an anti-HIV microbicide. CVN contains two non-overlapping carbohydrate-binding sites that bind the disaccharide Manalpha(1-2)Manalpha (which represents the terminal disaccharide of all three arms of Man(9)) with low to sub-micromolar affinities. The solution structure of a 1:2 CVN:Manalpha(1-2)Manalpha complex revealed that CVN recognizes the stacked conformation of Manalpha(1-2)Manalpha through a deep hydrophilic-binding pocket on one side of the protein (site 2) and a semi-circular cleft on the other (site 1). With the prominent exception of the C1 hydroxyl group of the reducing mannopyranose ring, the bound disaccharide is positioned so that each hydroxyl group is involved in a direct or water-mediated hydrogen bond to the polar or charged side-chains comprising the binding pocket. Thus, to determine whether the next-most reducing mannopyranose ring will augment CVN affinity and selectivity, we have characterized by NMR and ITC the binding of CVN to three synthetic trisaccharides representing the full-length D1, D2 and D3 arms of mammalian oligomannosides. Our findings demonstrate that site 1 is able to discriminate between the three related trisaccharides methyl Manalpha(1-2)Manalpha(1-2)Man, methyl Manalpha(1-2)Manalpha(1-3)Man and methyl Manalpha(1-2)Manalpha(1-6)Man with remarkable selectivity, and binds these trisaccharides with K(A) values ranging from 8.1x10(3)M(-1) to 6.6x10(6)M(-1). Site 2 is less selective in that it binds all three trisaccharides with similar K(A) values ranging from 1.7 to 3.7(+/-0.3)x10(5)M(-1), but overall binds these trimannosides with higher affinities than site 1. The diversity of pathogenic organisms that display alpha(1-2)-linked mannosides on their cell surfaces suggests a broad defensive role for CVN in its cyanobacterial source.  相似文献   

19.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

20.
The hypervariable D3 domain of Salmonella flagellin, composed of residues 190-283, is situated at the outer surface of flagellar filaments. A flagellin mutant deprived of the complete D3 domain (ΔD3_FliC) exhibited a significantly decreased thermal stability (Tm 41.9 °C) as compared to intact flagellin (Tm 47.3 °C). However, the stability of filaments formed from ΔD3_FliC subunits was virtually identical with that of native flagellar filaments. While D3 comprises the most stable part of monomeric flagellin playing an important role in the stabilization of the other two (D1 and D2) domains, the situation is reversed in the polymeric state. Upon filament formation, ordering of the disordered terminal regions of flagellin in the core part of the filament results in the stabilization of the radially arranged D1 and D2 domains, and there is a substantial increase of stability even in the distant outermost D3 domain, which is connected to D2 via a pair of short antiparallel β-strands. Our experiments revealed that crosslinking the ends of the isolated D3 domain through a disulfide bridge gives rise to a stabilization effect reminiscent of that observed upon polymerization. It appears that the short interdomain linker between domains D2 and D3 serves as a stabilization center that facilitates propagation of the conformational signal from the filament core to the outer part of filament. Because D3 is a largely independent part of flagellin, its replacement by heterologous proteins or domains might offer a promising approach for creation of various fusion proteins possessing polymerization ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号