首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R1 and R2), and relaxation dispersion (R1ρ) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (∼30 μs) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.  相似文献   

3.
The complex formed by U1A RBD1 and the U1 snRNA stem/loop II is noted for its high affinity and exquisite specificity. Here, that complex is investigated by 5 ns molecular dynamics simulations and analyzed by reorientational eigenmode dynamics to determine the dynamic properties of the RNA:protein interface that could contribute to the binding mechanism. The analysis shows that there is extensive correlation between motions of the RNA and protein, involving 7 of the 10 RNA loop nucleotides, the protein beta-sheet surface, two of its loops, and its C-terminal tripeptide sequence. Order parameters of these regions of the complex are uniformly high, indicating restricted motion. However, several regions of both RNA and protein retain local flexibility, notably three nucleotides of the RNA loop and one loop of RBD1 that does not contact RNA. The highly correlated motions involving both molecules reflect the intricate network of interactions that characterize this complex and could account in part for the thermodynamic coupling observed for complex formation.  相似文献   

4.
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism.  相似文献   

5.
The N-terminal RNA-binding domain of the human U1A protein (RBD1) undergoes local conformational changes upon binding to its target RNA. Here, the wild-type RBD1 and two mutants are examined with molecular dynamics simulations that are analyzed using the reorientational eigenmode dynamics (RED) formalism. The results reveal changes in the magnitude and extent of coupled intra-domain motions resulting from single amino acid substitutions. Interpretation of the novel RED results and corresponding NMR relaxation data suggests that the loss of collective motions in the mutants could account for their weak RNA-binding.  相似文献   

6.
7.
The major packaging signal of human immunodeficiency virus type 1 (HIV-1) RNA has been localised to the region 3' to the major splice donor within the leader sequence. Secondary structural studies for this region of the HIV-1 genome have shown the existence of a stem-loop structure capped by a purine-rich tetraloop. Extensive mapping data presented here lead to the complete characterisation of the structure of the stem-loop, including a new purine-rich internal loop in the lower part of the structure and the previously established GGAG tetraloop at its tip. Biochemical analysis reveals that both internal loop and tetraloop are primary sites for interaction with Gag polyprotein, and that binding of Gag protein leads to a conformational change which alters the RNA structure. NMR spectroscopy has been used to determine the three-dimensional structure of this complete stem-loop structure. The structural analysis reveals a significant difference between the apical part of the stem-loop structure, which adopts a well-defined conformation, and the purine-rich internal loop, which is instead very flexible. In contrast to what is generally observed for internal loop structures in RNA, this region of the encapsidation signal adopts a structure lacking stable interstrand interactions capable of stabilising a unique conformation. We suggest that the stem-loop structure represents a nucleation site for Gag protein binding, and that the protein exploits the flexibility of the internal loop to initiate the unwinding of the structure with successive addition of Gag molecules interacting with the RNA and each other through conserved I (interaction) domains.  相似文献   

8.
9.
10.
According to NMR chemical shift data, the ensemble of ubiquitin is a mixture of “open” and “closed” conformations at rapid equilibrium. Pressure perturbations provide the means to study the transition between the two conformers by imposing an additional constraint on the system's partial molar volume. Here we use nanosecond-timescale molecular dynamics simulations to characterize the network of correlated motions accessible to the conformers at low- and high-pressure conditions. Using the isotropic reorientational eigenmode dynamics formalism to analyze our simulation trajectories, we reproduce NMR relaxation data without fitting any parameters of our model. Comparative analysis of our results suggests that the two conformations behave very differently. The dynamics of the “closed” conformation are almost unaffected by pressure and are dominated by large-amplitude correlated motions of residues 23-34 in the extended α-helix. The “open” conformation under conditions of normal pressure displays increased mobility, focused on the loop residues 17-20, 46-55, and 58-59 at the bottom of the core of the structure, as well as the C-terminal residues 69-76, that directly participate in key protein-protein interactions. For the same conformation, a pressure increase induces a loss of separability between molecular tumbling and internal dynamics, while motions between different backbone sites become uncorrelated.  相似文献   

11.
The dominant dynamics of a partially folded A-state analogue of ubiquitin that give rise to NMR 15N spin relaxation have been investigated using molecular dynamics (MD) computer simulations and reorientational quasiharmonic analysis. Starting from the X-ray structure of native ubiquitin with a protonation state corresponding to a low pH, the A-state analogue was generated by a MD simulation of a total length of 33 ns in a 60%/40% methanol/water mixture using a variable temperature scheme to control and speed up the structural transformation. The N-terminal half of the A-state analogue consists of loosely coupled native-like secondary structural elements, while the C-terminal half is mostly irregular in structure. Analysis of dipolar N-H backbone correlation functions reveals reorientational amplitudes and time-scale distributions that are comparable to those observed experimentally. Thus, the trajectory provides a realistic picture of a partially folded protein that can be used for gaining a better understanding of the various types of reorientational motions that are manifested in spin-relaxation parameters of partially folded systems. For this purpose, a reorientational quasiharmonic reorientational analysis was performed on the final 5 ns of the trajectory of the A-state analogue, and for comparison on a 5 ns trajectory of native ubiquitin. The largest amplitude reorientational modes show a markedly distinct behavior for the two states. While for native ubiquitin, such motions have a more local character involving loops and the C-terminal end of the polypeptide chain, the A-state analogue shows highly collective motions in the nanosecond time-scale range corresponding to larger-scale movements between different segments. Changes in reorientational backbone entropy between the A-state analogue and the native state of ubiquitin, which were computed from the reorientational quasiharmonic analyses, are found to depend significantly on motional correlation effects.  相似文献   

12.
Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in "V" shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample, on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dynamics of K-turns is strikingly different for example from the bacterial 5S rRNA Loop E motif or BWYV frameshifting pseudoknot which appear to be rigid in the same type of simulations. Bistability and flexibility of K-turns was also suggested by several recent biochemical studies. Although the results of MD simulations should be considered as a qualitative picture of the K-turn dynamics due to force field and sampling limitations, the main advantage of the MD technique is its ability to investigate the region close to K-turn ribosomal-like geometries. This part of the conformational space is not well characterized by the solution experiments due to large-scale conformational changes seen in the experiments. We suggest that K-turns are well suited to act as flexible structural elements of ribosomal RNA. They can for example be involved in mediation of large-scale motions or they can allow a smooth assembling of the other parts of the ribosome.  相似文献   

13.
Du Z  Ulyanov NB  Yu J  Andino R  James TL 《Biochemistry》2004,43(19):5757-5771
The 5'-untranslated region of positive-strand RNA viruses harbors many cis-acting RNA structural elements that are important for various viral processes such as replication, translation, and packaging of new virions. Among these is loop B RNA of the stem-loop IV domain within the internal ribosomal entry site (IRES) of enteroviruses, including Poliovirus type 1 (PV1). Studies on PV1 have shown that specific recognition of loop B by the first KH (hnRNP K homology) domain of cellular poly(rC)-binding protein 2 (PCBP2) is essential for efficient translation of the viral mRNA. Here we report the NMR solution structures of two representative sequence variants of enteroviral loop B RNA. The two RNA variants differ at only one position (C vs U) within a six-nucleotide asymmetric internal loop sequence that is the binding site for the PCBP2 KH1 domain. Surprisingly, the two RNAs are drastically different in the overall shape and local dynamics of the bulge region. The RNA with the 5'-AUCCCU bulge sequence adopts an overall L shape. Its bulge nucleotides, especially the last four, are highly flexible and not very well defined by NMR. The RNA with the 5'-AUUCCU bulge sequence adopts an overall U shape, and its bulge sequence exhibits only limited flexibility. A detailed analysis of the two RNA structures and their dynamic properties, as well as available sequence data and known KH domain-RNA complex structures, not only provides insights into how loop B RNA might be recognized by the PCBP2 KH1 domain but also suggests a possible correlation between structural flexibility and pre-existing structural features for protein recognition.  相似文献   

14.
PKR (double-stranded RNA-dependent protein kinase) is an important component of host defense to virus infection. Binding of dsRNA to two dsRBDs (double-stranded RNA binding domains) of PKR modulates its own kinase activation. How structural features of natural target RNAs, such as bulges and loops, have an effect on the binding to two dsRBDs of PKR still remains unclear. By using ITC and NMR, we show here that both the bulge and loop of TAR RNA are necessary for the high affinity binding to dsRBD1-dsRBD2 of PKR with 1:1 stoichiometry. The binding site for the dsRBD1-dsRBD2 spans from upper bulge to lower stem of the TAR RNA, based on chemical shift mapping. The backbone resonances in the 40 kDa TAR.dsRBD1-dsRBD2 were assigned. NMR chemical shift perturbation data suggest that the beta1-beta2 loop of the dsRBD1 interacts with the TAR RNA, whereas that of the dsRBD2 is less involved in the TAR RNA recognition. In addition, the residues of the interdomain linker between the dsRBD1 and the dsRBD2 also show large chemical perturbations indicating that the linker is involved in the recognition of TAR RNA. The results presented here provide the biophysical and spectroscopic basis for high-resolution structural studies, and show how local RNA structural features modulate recognition by dsRBDs.  相似文献   

15.
The structure and dynamics of the stem-loop transactivation response element (TAR) RNA from the human immunodeficiency virus type-1 (HIV-1) bound to the ligand argininamide (ARG) has been characterized using a combination of a large number of residual dipolar couplings (RDCs) and trans-hydrogen bond NMR methodology. Binding of ARG to TAR changes the average inter-helical angle between the two stems from approximately 47 degrees in the free state to approximately 11 degrees in the bound state, and leads to the arrest of large amplitude (+/-46 degrees ) inter-helical motions observed previously in the free state. While the global structural dynamics of TAR-ARG is similar to that previously reported for TAR bound to Mg2+, there are substantial differences in the hydrogen bond alignment of bulge and neighboring residues. Based on a novel H5(C5)NN experiment for probing hydrogen-mediated 2hJ(N,N) scalar couplings as well as measured RDCs, the TAR-ARG complex is stabilized by a U38-A27.U23 base-triple involving an A27.U23 reverse Hoogsteen hydrogen bond alignment as well as by a A22-U40 Watson-Crick base-pair at the junction of stem I. These hydrogen bond alignments are not observed in either the free or Mg2+ bound forms of TAR. The combined conformational analysis of TAR under three states reveals that ligands and divalent ions can stabilize similar RNA global conformations through distinct interactions involving different hydrogen bond alignments in the RNA.  相似文献   

16.
Recent functional studies reported on human adult hemoglobin (HbA) show that heterotropic effector-linked tertiary structural changes are primarily responsible for modulating the oxygen affinity of hemoglobin. We present the results of 6-ns molecular dynamics simulations performed to gain insights into the dynamical and structural details of these effector-linked tertiary changes. All-atom simulations were carried out on a series of models generated for T- and R-state HbA, and for 2,3-diphosphoglycerate-bound models. Cross-correlation analyses identify both intra- and intersubunit correlated motions that are perturbed by the presence of the effector. Principal components analysis was used to decompose the covariance matrix extracted from the simulations and reconstruct the trajectories along the principal coordinates representative of functionally important collective motions. It is found that HbA in both quaternary states exists as ensembles of tertiary conformations that introduce dynamic heterogeneity in the protein. 2,3-Diphosphoglycerate induces significant perturbations in the fluctuations of both HbA states that translate into the protein visiting different tertiary conformations within each quaternary state. The analysis reveals that the presence of the effector affects the most important components of HbA motions and that heterotropic effectors modify the overall dynamics of the quaternary equilibrium via tertiary changes occurring in regions where conserved functionally significant residues are located, namely in the loop regions between helices C and E, E and F, and F and G, and in concerted helix motions. The changes are not apparent when comparing the available x-ray crystal structures in the presence and absence of effector, but are striking when comparing the respective dynamic tertiary conformations of the R and T tetramers.  相似文献   

17.
18.
Abstract

Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in “V” shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample, on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dynamics of K-turns is strikingly different for example from the bacterial 5S rRNA Loop E motif or BWYV frameshifting pseudoknot which appear to be rigid in the same type of simulations. Bistability and flexibility of K-turns was also suggested by several recent biochemical studies. Although the results of MD simulations should be considered as a qualitative picture of the K-turn dynamics due to force field and sampling limitations, the main advantage of the MD technique is its ability to investigate the region close to K-turn riboso- mal-like geometries. This part of the conformational space is not well characterized by the solution experiments due to large-scale conformational changes seen in the experiments. We suggest that K-turns are well suited to act as flexible structural elements of ribosomal RNA. They can for example be involved in mediation of large-scale motions or they can allow a smooth assembling of the other parts of the ribosome.  相似文献   

19.
20.
A comparative analysis of TAR RNA structures in human and simian immunodeficiency viruses reveals the conservation of certain structural features despite the divergence in sequence. Both the TAR elements of HIV-1 and SIV-chimpanzee can be folded into relatively simple one-stem hairpin structures. Chemical and RNAase probes were used to analyze the more complex structure of HIV-2 TAR RNA, which folds into a branched hairpin structure. A surprisingly similar RNA conformation can be proposed for SIV-mandrill, despite considerable divergence in nucleotide sequence. A third structural presentation of TAR sequences is seen for SIV-african green monkey. These results are generally consistent with the classification of HIV-SIV viruses in four subgroups based on sequence analyses (both nucleotide- and amino acid-sequences). However, some conserved TAR structures were detected for members of different virus subgroups. It is therefore proposed that RNA structure analysis might provide an additional tool for determining phylogenetic relationships among the HIV-SIV viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号