首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nucleotide diversity on the ovine Y chromosome   总被引:1,自引:0,他引:1  
To investigate the impact of male-mediated introgression during the evolution of sheep breeds, a sequencing approach was used to identify single nucleotide polymorphisms (SNPs) from the male-specific region of the ovine Y chromosome (MSY). A total of 4380 bp, which comprised nine fragments from five MSY genes was sequenced within a panel of 14 males from seven breeds. Sequence alignment identified a single segregating site, an A/G SNP located approximately 1685 bp upstream of the ovine SRY gene. The resulting estimation of nucleotide diversity (piY = 0.90 +/- 0.50 x 10(-4)) falls towards the lower end of estimates from other species. This was compared with the nucleotide diversity estimated from the autosomal component of the genome. Sequence analysis of 2933 bp amplified from eight autosomal genes revealed a nucleotide diversity (piA = 2.15 +/- 0.27 x 10(-3)) higher than previously reported for sheep. Following adjustment for the contrasting influence of effective population size and a male biased mutation rate, comparison revealed that approximately 10% of the expected nucleotide diversity is present on the ovine Y chromosome.  相似文献   

3.
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y chromosome haplotypes.Six AZFs of the Y chromosome have been discov-ered including AZFa,AZFb,AZFc,and their combinations AZFbc,AZFabc,and partial AZFc called AZFc/gr/gr.Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y hap-lotypes.This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relation-ship with male infertility from the view of chromosome evolution.After analysis of the relationship between AZFc and male infertility,we concluded that spermatogenesis is controlled by a network of genes,which may locate on the Y chromosome,the autochromosomes,or even on the X chromosome.Further investigation of the molecular mechanisms underlying male fertility/infertifity will facilitate our knowledge of functional genomics.  相似文献   

4.
Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya’s small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The Y chromosome should degenerate because it cannot recombine. However, male‐limited transmission increases selection efficiency for male‐benefit alleles on the Y, and therefore, Y chromosomes should contribute significantly to variation in male fitness. This means that although the Drosophila Y chromosome is small and gene‐poor, Y‐linked genes are vital for male fertility in Drosophila melanogaster and the Y chromosome has large male fitness effects. It is unclear whether the same pattern is seen in the closely related Drosophila simulans. We backcrossed Y chromosomes from three geographic locations into five genetic backgrounds and found strong Y and genetic background effects on male fertility. There was a significant Y‐background interaction, indicating substantial epistasis between the Y and autosomal genes affecting male fertility. This supports accumulating evidence that interactions between the Y chromosome and the autosomes are key determinants of male fitness.  相似文献   

6.
7.
A neocentromere in the DAZ region of the human Y chromosome   总被引:2,自引:0,他引:2  
We describe a novel rearranged human Y chromosome consisting of an inverted duplication of the long arm heterochromatin and a small amount of euchromatin: rea(Y)(qter-q11.2::q11.2-qter). The normal centromere has been deleted and a neocentromere containing CENP-A, -C, -E and Mad2 but not CENP-B has formed close to the breakpoint. A 2.7 Mb yeast artificial chromosome contig spanning the breakpoint was constructed and the breakpoint was localised to a region of <120 kb close to the DAZ gene cluster. Combined immunofluorescence and fluorescence in situ hybridisation showed that the centromeric protein-binding domain of the neocentromere was located near the breakpoint and within the DAZ cluster.  相似文献   

8.
Conserved linkage groups have been found on the X and autosomal chromosomes in several mammalian species. The identification of conserved chromosomal regions has potential for predicting gene location in mammals, particularly in humans. The genes for human aminoacylase-1 (ACY1, N-acylamino acid aminohydrolase, E.C.3.5.1.14), an enzyme in amino acid metabolism, and beta-galactosidase-A (GLB1, E.C.3.2.1.23), deficient in GM1-gangliosidosis, have been assigned to human chromosome 3. Using human-mouse somatic cell hybrids segregating translocations of human chromosome 3, expression of both ACY1 and GLB1 correlated with the presence of the p21 leads to q21 region of chromosome 3. In a previous study, assignment of these genes to mouse chromosome 9 used mouse-Chinese hamster somatic cell hybrids, eliminating mouse chromosomes. To approximate the size of the conserved region in the mouse, experiments were performed with recombinant inbred mouse strains. An electrophoretic variant of ACY-1 in mouse strains was used to map the Acy-1 gene 10.7 map U from the beta-galactosidase locus. These data suggest that there is a region of homology within the p21 leads to q21 region of human chromosome 3 and a segment of mouse chromosome 9. Since the mouse transferrin gene (Trf) is closely linked to the aminoacylase and beta-galactosidase loci, we predict that the human transferrin (TF) gene is on chromosome 3.  相似文献   

9.
In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining regions that contain more genes.  相似文献   

10.
11.
12.
13.
14.
The Drosophila melanogaster Y chromosome has long been known to contain few functional genes other than several required for male fertility. The D. melanogaster genome sequence has now allowed characterization of two more male fertility genes, shedding light on the function and evolution of Y chromosomes.  相似文献   

15.
16.
The formation of new genes is a primary driving force of evolution in all organisms. The de novo evolution of new genes from non-protein-coding genomic regions is emerging as an important additional mechanism for novel gene creation. Y chromosomes underlie sex determination in mammals and contain genes that are required for male-specific functions. In this study, a search was undertaken for Y chromosome de novo genes derived from non-protein-coding sequences. The Y chromosome orphan gene variable charge, Y-linked (VCY)2, is an autosome-derived gene that has sequence similarity to large autosomal fragments but lacks an autosomal protein-coding homolog. VCY2 locates in the amplicon containing long DNA fragments that were transposed from autosomes to the Y chromosome before the ape-monkey split. We confirmed that VCY2cannot be encoded by autosomes due to the presence of multiple disablers that disrupt the open reading frame, such as the absence of start or stop codons and the presence of premature stop codons. Similar observations have been made for homologs in the autosomes of the chimpanzee, gorilla, rhesus macaque, baboon and out-group marmoset, which suggests that there was a non-protein-coding ancestral VCY2 that was common to apes and monkeys that predated the transposition event. Furthermore, while protein-coding orthologs are absent, a putative non-protein-coding VCY2 with conserved disablers was identified in the rhesus macaque Y chromosome male-specific region. This finding implies that VCY2 might have not acquired its protein-coding ability before the ape-monkey split. VCY2 encodes a testis-specific expressed protein and is involved in the pathologic process of male infertility, and the acquisition of this gene might improve male fertility. This is the first evidence that de novo genes can be generated from transposed autosomal non-protein-coding segments, and this evidence provides novel insights into the evolutionary history of the Y chromosome.  相似文献   

17.
18.
Some regions of the genome exhibit sexual asymmetries in inheritance and are thus subjected to sex‐biased evolutionary forces. Maternal inheritance of mitochondrial DNA (mtDNA) enables mtDNA mutations harmful to males, but not females, to accumulate. In the face of male‐harmful mtDNA mutation accumulation, selection will favour the evolution of compensatory modifiers in the nuclear genome that offset fitness losses to males. The Y chromosome is a candidate to host these modifiers, because it is paternally inherited, known to harbour an abundance of genetic variation for male fertility, and therefore likely to be under strong selection to uphold male viability. Here, we test for intergenomic interactions involving mtDNA and Y chromosomes in male Drosophila melanogaster. Specifically, we examine effects of each of these genomic regions, and their interaction, on locomotive activity, across different environmental contexts – both dietary and social. We found that both the mtDNA haplotype and Y chromosome haplotype affected activity in males assayed in an environment perceived as social. These effects, however, were not evident in males assayed in perceived solitary environments, and neither social nor solitary treatments revealed evidence for intergenomic interactions. Finally, the magnitude and direction of these genetic effects was further contingent on the diet treatment of the males. Thus, genes within the mtDNA and Y chromosome are involved in genotype‐by‐environment interactions. These interactions might contribute to the maintenance of genetic variation within these asymmetrically inherited gene regions and complicate the dynamics of genetic interactions between the mtDNA and the Y chromosome.  相似文献   

19.
Congenital multiple ocular defects (MOD) of Japanese black cattle is a hereditary ocular disorder with an autosomal recessive mode of inheritance showing developmental defects of the lens, retina and iris, persistent embryonic eye vascularization and microphthalmia. The MOD locus has been mapped by linkage analysis to a 6.6-cM interval on the proximal end of bovine chromosome 18, which corresponds to human chromosome 16q and mouse chromosome 8. To refine the MOD region in cattle, we constructed an integrated radiation hybrid (RH) map of the proximal region of bovine chromosome 18, which consisted of 17 genes and 10 microsatellite markers, using the SUNbRH7000 panel. Strong conservation of gene order was found among the corresponding chromosomal regions in cattle, human and mouse. The MOD-critical region was fine mapped to a 59.5-cR region that corresponds to a 6.3-Mb segment of human chromosome 16 and a 4.8-Mb segment of mouse chromosome 8. Several positional candidate genes, including FOXC2 and USP10, were identified in this region.  相似文献   

20.
The previous genetic mapping data have suggested that most of the rainbow trout sex chromosome pair is pseudoautosomal, with very small X-specific and Y-specific regions. We have prepared an updated genetic and cytogenetic map of the male rainbow trout sex linkage group. Selected sex-linked markers spanning the X chromosome of the female genetic map have been mapped cytogenetically in normal males and genetically in crosses between the OSU female clonal line and four different male clonal lines as well as in outcrosses involving outbred OSU and hybrids between the OSU line and the male clonal lines. The cytogenetic maps of the X and Y chromosomes were very similar to the female genetic map for the X chromosome. Five markers on the male maps are genetically very close to the sex determination locus ( SEX ), but more widely spaced on the female genetic map and on the cytogenetic map, indicating a large region of suppressed recombination on the Y chromosome surrounding the SEX locus. The male map is greatly extended at the telomere. A BAC clone containing the SCAR (sequence characterized amplified region) Omy - 163 marker, which maps close to SEX , was subjected to shotgun sequencing. Two carbonyl reductase genes and a gene homologous to the vertebrate skeletal ryanodine receptor were identified. Carbonyl reductase is a key enzyme involved in production of trout ovarian maturation hormone. This brings the number of type I genes mapped to the sex chromosome to six and has allowed us to identify a region on zebrafish chromosome 10 and medaka chromosome 13 which may be homologous to the distal portion of the long arm of the rainbow trout Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号