首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Survivin is a protein which functions as a mitotic regulator as well as apoptosis inhibitor. In this study, we show that introduction of synthetic miR-542-3p mimetic reduced both mRNA and protein levels of survivin. In A549 cells, luciferase reporter assay revealed that miR-542-3p targeted predicted binding sites in the 3′-untranslated region (3′-UTR) of survivin. We also demonstrate that ectopic expression of miR-542-3p inhibited cell proliferation by inducing Gap 1 (G1) and Gap 2/Mitosis (G2/M) cell cycle arrest. Collectively, these results suggest that survivin is a direct target of miR-542-3p and growth inhibition by miR-542-3p may have a potential utility as an anti-cancer therapy.  相似文献   

3.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases. Previous RNA interference (RNAi) experiments in Trypanosoma brucei indicated that cyclin E1, cdc2-related kinase (CRK)1 and CRK2 are involved in regulating G1/S transition, whereas cyclin B2 and CRK3 play a pivotal role in controlling the G2/M checkpoint. To search for potential interactions between the other cyclins and CRKs that may not have been revealed by the RNAi assays, we used the yeast two-hybrid system and an in vitro glutathione-S-transferase pulldown assay and observed interactions between cyclin E1 and CRK1, CRK2 and CRK3. Cyclins E1-E4 are homologues of yeast Pho80 cyclin. But yeast complementation assays indicated that none of them possesses a Pho80-like function. Analysis of cyclin E1+CRK1 and cyclin E1+CRK2 double knockdowns in the procyclic form of T. brucei indicated that the cells were arrested more extensively in the G1 phase beyond the cumulative effect of individual knockdowns. But BrdU incorporation was impaired significantly only in cyclin E1+CRK1-depleted cells, whereas a higher percentage of cyclin E1+CRK2 knockdown cells assumed a grossly elongated posterior end morphology. A double knockdown of cyclin E1 and CRK3 arrested cells in G2/M much more efficiently than if only CRK3 was depleted. Taken together, these data suggest multiple functions of cyclin E1: it forms a complex with CRK1 in promoting G1/S phase transition; it forms a complex with CRK2 in controlling the posterior morphogenesis during G1/S transition; and it forms a complex with CRK3 in promoting passage across the G2/M checkpoint in the trypanosome.  相似文献   

4.
In recent years, microRNAs (miRNAs) have been proved to be closely related to the tumorigenesis and progression. An increasing number of researches have shown that microRNAs function as oncogenes or tumor suppressor genes in human malignant tumors. This study aims to explore the effects of microRNA-383 (miR-383) on malignant biological function of human gliomas. We detected the expression of miR-383 in glioma tissues and normal brain tissues by quantitative real-time PCR. Anchorage-independent growth assays, and flow cytometry were used to evaluate the functions of miR-383 that involves in cell growth and cell cycle. Western blotting assay was used to examine protein expression levels of Cyclin D1 (CCND1), a cell cycle-associated oncogene which has a predicted binding site of miR-383 within its 3′-untranslated region (3′-UTR), and luciferase activity assay was used to evaluate the 3′-UTR activity of CCND1. In this study, we found that miR-383 expression level was lower in gliomas than normal brain tissues. Overexpression of miR-383 in U251 and U87 cells showed a significant inhibitory effect on cell growth, which accompanied with cell cycle G0/G1 arrest as well as downregulation of CCND1 expression. Moreover, CCND1 was verified to be one of the direct targets of miR-383. In summary, this study suggested that miR-383 plays the role of tumor suppressor by targeting CCND1 in glioma cells, and may be useful for developing a new therapeutic strategy for gliomas.  相似文献   

5.
6.
7.
Long noncoding RNAs (lncRNAs) are vital mediators involved in cancer progression. Previous studies confirmed that FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is upregulated in tumor diseases. The potential influence of FOXD2-AS1 in glioma progression, however, remains unknown. In this paper, FOXD2-AS1 was found to be upregulated in glioma tissues. Its level was linked with glioma stage. Moreover, glioma patients expressing high level of FOXD2-AS1 suffered worse prognosis. Biological functions of FOXD2-AS1 in glioma cells were analyzed through integrative bioinformatics and TCGA RNA sequencing data analysis. Pathway enrichment analysis uncovered that FOXD2-AS1 was mainly linked with cell cycle regulation in both low-grade glioma and glioblastoma. Further experiments demonstrated that silence of FOXD2-AS1 inhibited proliferation, arrested cell cycle and downregulated cyclin-dependent kinase 1 (CDK1) in human glioma cells. Dual-luciferase reporter assay confirmed that FOXD2-AS1 upregulated CDK1 by sponging miR-31. Rescue assays were performed and confirmed the regulatory loop FOXD2-AS1/miR-31/CDK1 in glioma. Collectively, our results indicated that the FOXD2-AS1/miR-31/CDK1 axis influenced glioma progression, providing a potential new target for glioma patients.  相似文献   

8.
Although the aberrant activation of cell cycle proteins has a critical role in neuronal death, effectors or mediators of cyclin D1/cyclin-dependent kinase 4 (CDK4)-mediated death signal are still unknown. Here, we describe a previously unsuspected role of LIM kinase 2 (LIMK2) in programmed necrotic neuronal death. Downregulation of p27Kip1 expression by Rho kinase (ROCK) activation induced cyclin D1/CDK4 expression levels in neurons vulnerable to status epilepticus (SE). Cyclin D1/CDK4 complex subsequently increased LIMK2 expression independent of caspase-3 and receptor interacting protein kinase 1 activity. In turn, upregulated LIMK2 impaired dynamic-related protein-1 (DRP1)-mediated mitochondrial fission without alterations in cofilin phosphorylation/expression and finally resulted in necrotic neuronal death. Inhibition of LIMK2 expression and rescue of DRP1 function attenuated this programmed necrotic neuronal death induced by SE. Therefore, we suggest that the ROCK-p27Kip1-cyclin D1/CDK4-LIMK2-DRP1-mediated programmed necrosis may be new therapeutic targets for neuronal death.  相似文献   

9.

Background

5′-Nitro-indirubinoxime (5′-NIO) is a new derivative of indirubin that exhibits anti-cancer activity in a variety of human cancer cells. However, its mechanism has not been fully clarified.

Methods

Human salivary gland adenocarcinoma (SGT) cells were used in this study. Western blot and RT-PCR analyses were performed to determine cellular Notch levels. The cell cycle stage and level of apoptosis were analyzed using flow cytometry analysis.

Results

5′-NIO significantly inhibited the mRNA levels of Notch-1 and Notch-3 and their ligands (Delta1, 2, 3, and Jagged-2) in SGT cells. Immunocytochemistry analysis showed that 5′-NIO specifically decreased the level of Notch-1 in the nucleus. In addition, 5′-NIO induced G1 cell cycle arrest by reducing levels of CDK4 and CDK6 in SGT cells. Using flow cytometry and immunoblotting analysis, we found that 5′-NIO induces apoptosis following the secretion of cytochrome c and the activation of caspase-3 and caspase-7. Intracellular Notch-1 overexpression led to a decrease in G1 phase arrest and an inhibition of 5′-NIO-induced apoptosis.

Conclusion

These observations suggest that 5′-NIO induces cell cycle arrest and apoptosis by down-regulating Notch-1 signaling.

General significance

This study identifies a new mechanism of 5′-NIO-mediated anti-tumor properties. Thus, 5′-NIO could be used as a candidate for salivary gland adenocarcinoma therapeutics.  相似文献   

10.
Upadhyay D  Chang W  Wei K  Gao M  Rosen GD 《FEBS letters》2007,581(2):248-252
We studied the effects of fibroblast growth factor (FGF-10) on H2O2-induced alveolar epithelial cell (AEC) G1 arrest and the role of G1 cyclins. FGF-10 prevented H2O2-induced AEC G1 arrest. FGF-10 induced 2-4-fold increase in cyclin E, cyclin A and CDKs (2,4) alone and in AEC treated with H2O2. H2O2 downregulated cyclin D1; FGF-10 blocked these effects. FGF-10 prevented H2O2-induced upregulation of CDK inhibitor, p21. SiRNAp21 blocked H2O2-induced downregulation of cyclins, CDKs and AEC G1 arrest. Accordingly, we provide first evidence that FGF-10 regulates G1 cyclins and CDKs, and prevents H2O2-induced AEC G1 arrest.  相似文献   

11.
Laezza C  Pisanti S  Crescenzi E  Bifulco M 《FEBS letters》2006,580(26):6076-6082
This study was designed to determine the molecular mechanisms underlying the anti-proliferative effect of the endocannabinoid anandamide on highly invasive human breast cancer cells, MDA-MB-231. We show that a metabolically stable analogue of anandamide, Met-F-AEA, induces an S phase growth arrest correlated with Chk1 activation, Cdc25A degradation and suppression of Cdk2 activity. These findings demonstrate that Met-F-AEA induced cell cycle blockade relies on modulated expression and activity of key S phase regulatory proteins. The observed mechanism of action, already reported for well-known chemotherapeutic drugs, provides strong evidence for a direct role of anandamide related compounds in the activation of cell cycle checkpoints.  相似文献   

12.
13.
Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.  相似文献   

14.
15.
Visualization of cell-cycle G1 phase for monitoring the early response of cell cycle specific drug remains challenging. In this study, we developed genetically engineered bioluminescent reporters by fusing full-length cyclin E to the C-terminal luciferase (named as CycE-Luc and CycE-Luc2). Next, HeLa cell line or an ER-positive breast cancer cell line MCF-7 was transfected with these reporters. In cellular assays, the bioluminescent signal of CycE-Luc and CycE-Luc2 was accumulated in the G1 phase and decreased after exiting from the G1 phase. The expression of CycE-Luc and CycE-Luc2 fusion protein was regulated in a cell cycle-dependent manner, which was mediated by proteasome ubiquitination and degradation. Next, our in vitro and in vivo experiment confirmed that the cell cycle arrested by anti-cancer agents (palbociclib or 5-FU) was monitored quantitatively and dynamically by bioluminescent imaging of these reporters in a real-time and non-invasive manner. Thus, these optical reporters could reflect the G1 phase alternation of cell cycle, and might become a future clinically translatable approach for predicting and monitoring response to palbociclib in patients with ER-positive breast cancer.  相似文献   

16.
Histone deacetylase inhibitors (HDACi) have been discovered as potential drugs for cancer treatment. The effect of BL1521, a novel HDACi, on the cell cycle distribution and the induction of apoptosis was investigated in a panel of MYCN single copy and MYCN amplified neuroblastoma cell lines. BL1521 arrested neuroblastoma cells in the G1 phase and induced up to 30% apoptosis. Downregulation of CDK4, upregulation of p21(WAF1/CIP1) and an increase of hypophosphorylated retinoblastoma protein were observed, indicating a possible mechanism for the cell-cycle arrest. BL1521 also induced downregulation of p27, which may underlie the observed induction of apoptosis.  相似文献   

17.
Cell cycle progression is negatively regulated by the retinoblastoma family of pocket proteins and CDK inhibitors (CKIs). In contrast, CDKs promote progression through multiple phases of the cell cycle. One prominent way by which CDKs promote cell cycle progression is by inactivation of pocket proteins via hyperphosphorylation. Reactivation of pocket proteins to halt cell cycle progression requires dephosphorylation of multiple CDK-phosphorylated sites and is accomplished by PP2A and PP1 serine/threonine protein phosphatases. The same phosphatases are also implicated in dephosphorylation of multiple CDK substrates as cells exit mitosis and reenter the G1 phase of the cell cycle. This review is primarily focused on the role of PP2A and PP1 in the activation of pocket proteins during the cell cycle and in response to signaling cues that trigger cell cycle exit. Other functions of PP2A during the cell cycle will be discussed in brief, as comprehensive reviews on this topic have been published recently (De Wulf et al., 2009; Wurzenberger and Gerlich, 2011).  相似文献   

18.

Background and aims

The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation.

Methods

Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting.

Results

mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16.

Conclusions

This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.  相似文献   

19.
20.
The Wnt/β‐catenin signaling pathway regulates various aspects of development and plays important role in human carcinogenesis. Nemo‐like kinase (NLK), which is mediator of Wnt/β‐catenin signaling pathway, phosphorylates T‐cell factor/lymphoid enhancer factor (TCF/LEF) factor and inhibits interaction of β‐catenin/TCF complex. Although, NLK is known to be a tumor suppressor in Wnt/β‐catenin signaling pathway of colon cancer, the other events occurring downstream of NLK pathways in other types of cancer remain unclear. In the present study, we identified that expression of NLK was significantly up‐regulated in the HCCs compared to corresponding normal tissues in five selected tissue samples. Immunohistochemical analysis showed significant over‐expression of NLK in the HCCs. Targeted‐disruption of NLK suppressed cell growth and arrested cell cycle transition. Suppression of NLK elicited anti‐mitogenic properties of the Hep3B cells by simultaneous inhibition of cyclinD1 and CDK2. The results of this study suggest that NLK is aberrantly regulated in HCC, which might contribute to the mitogenic potential of tumor cells during the initiation and progression of hepatocellular carcinoma; this process appears to involve the induction of CDK2 and cyclin D1 and might provide a novel target for therapeutic intervention in patients with liver cancer. J. Cell. Biochem. 110: 687–696, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号