首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.  相似文献   

2.
In recent years, microRNAs (miRNAs) have been proved to be closely related to the tumorigenesis and progression. An increasing number of researches have shown that microRNAs function as oncogenes or tumor suppressor genes in human malignant tumors. This study aims to explore the effects of microRNA-383 (miR-383) on malignant biological function of human gliomas. We detected the expression of miR-383 in glioma tissues and normal brain tissues by quantitative real-time PCR. Anchorage-independent growth assays, and flow cytometry were used to evaluate the functions of miR-383 that involves in cell growth and cell cycle. Western blotting assay was used to examine protein expression levels of Cyclin D1 (CCND1), a cell cycle-associated oncogene which has a predicted binding site of miR-383 within its 3′-untranslated region (3′-UTR), and luciferase activity assay was used to evaluate the 3′-UTR activity of CCND1. In this study, we found that miR-383 expression level was lower in gliomas than normal brain tissues. Overexpression of miR-383 in U251 and U87 cells showed a significant inhibitory effect on cell growth, which accompanied with cell cycle G0/G1 arrest as well as downregulation of CCND1 expression. Moreover, CCND1 was verified to be one of the direct targets of miR-383. In summary, this study suggested that miR-383 plays the role of tumor suppressor by targeting CCND1 in glioma cells, and may be useful for developing a new therapeutic strategy for gliomas.  相似文献   

3.
The microRNA miR-138 is dysregulated in several human cancers, but the underlying mechanism remains largely unknown. Here, we report that miR-138 is commonly underexpressed in nasopharyngeal carcinoma (NPC) specimens and NPC cell lines. The ectopic expression of miR-138 dramatically suppressed cell proliferation and colony formation in vitro and inhibited tumorigenesis in vivo. Moreover, we identified the cyclin D1 (CCND1) gene as a novel direct target of miR-138. In consistent with the knocked-down expression of CCND1, overexpression of miR-138 inhibited cell growth and cell cycle progression in NPC cells. Furthermore, CCND1 was widely upregulated in NPC tumors, and its mRNA levels were inversely correlated with miR-138 expression. Taken together, our findings suggest that miR-138 might be a tumor suppressor in NPC, which is exerted partially by inhibiting CCND1 expression. The identification of functional miR-138 in NPC and its direct link to CCND1 might provide good candidates for developing diagnostic markers and therapeutic applications for NPC.  相似文献   

4.
5.
6.
miR-34是一类保守的、非编码miRNA。人类miR-34包括miR-34a、miR-34b和miR-34c等,在多种肿瘤中都呈现非正常表达。miR-34通过被p53激活,抑制E2F3、Bcl-2、c—myc、CDK4、CDK6、Cyclin D1以及Cyclin E2的表达,使肿瘤细胞停滞在G1期,抑制肿瘤细胞的生长,诱导肿瘤细胞凋亡,并通过E2F3、SIRT1与p53形成正反馈环路,不断增强其自身和p53的作用。本文就miR-34的研究进展进行综述。  相似文献   

7.
Liu Q  Fu H  Sun F  Zhang H  Tie Y  Zhu J  Xing R  Sun Z  Zheng X 《Nucleic acids research》2008,36(16):5391-5404
  相似文献   

8.
Liu JL  Jiang L  Lin QX  Deng CY  Mai LP  Zhu JN  Li XH  Yu XY  Lin SG  Shan ZX 《Life sciences》2012,90(25-26):1020-1026
AimUpregulation of microRNA 16 (miR-16) contributed to the differentiation of human bone marrow mesenchymal stem cells (hMSCs) toward myogenic phenotypes in a cardiac niche, the present study aimed to determine the role of miR-16 in this process.Main methodshMSCs and neonatal rat ventricular myocytes were co-cultured indirectly in two chambers to set up a cardiac microenvironment (niche). miRNA expression profile in cardiac-niche‐induced hMSCs was detected by miRNA microarray. Cardiac marker expression and cell cycle analysis were determined in different treatment hMSCs. Quantitative real-time PCR and Western blot were used to identify the expression of mRNA, mature miRNA and protein of interest.Key findingsmiRNA dysregulation was shown in hMSCs after cardiac niche induction. miR-16 was upregulated in cardiac-niche‐induced hMSCs. Overexpression of miR-16 significantly increased G1-phase arrest of the cell cycle in hMSCs and enhanced the expression of cardiac marker genes, including GATA4, NK2-5, MEF2C and TNNI3. Differentiation-inducing factor 3 (DIF-3), a G0/G1 cell cycle arrest compound, was used to induce G1 phase arrest in cardiac-niche‐induced hMSCs, and the expression of cardiac marker genes was up-regulated in DIF-3-treated hMSCs. The expression of CCND1, CCND2 and CDK6 was suppressed by miR-16 in hMSCs. CDK6, CCND1 or CCND2 knockdown resulted in G1 phase arrest in hMSCs and upregulation of cardiac marker gene expression in hMSCs in a cardiac niche.SignificancemiR-16 enhances G1 phase arrest in hMSCs, contributing to the differentiation of hMSCs toward myogenic phenotypes when in a cardiac niche. This mechanism provides a novel strategy for pre-modification of hMSCs before hMSC-based transplantation therapy for severe heart diseases.  相似文献   

9.
Survivin is a protein which functions as a mitotic regulator as well as apoptosis inhibitor. In this study, we show that introduction of synthetic miR-542-3p mimetic reduced both mRNA and protein levels of survivin. In A549 cells, luciferase reporter assay revealed that miR-542-3p targeted predicted binding sites in the 3′-untranslated region (3′-UTR) of survivin. We also demonstrate that ectopic expression of miR-542-3p inhibited cell proliferation by inducing Gap 1 (G1) and Gap 2/Mitosis (G2/M) cell cycle arrest. Collectively, these results suggest that survivin is a direct target of miR-542-3p and growth inhibition by miR-542-3p may have a potential utility as an anti-cancer therapy.  相似文献   

10.
Dysregulation of cyclin-dependent kinases (CDKs) can promote unchecked cell proliferation and cancer progression. Although focal adhesion kinase (FAK) contributes to regulating cell cycle progression, the exact molecular mechanism remains unclear. Here, we found that FAK plays a key role in cell cycle progression potentially through regulation of CDK4/6 protein expression. We show that FAK inhibition increased its nuclear localization and induced G1 arrest in B16F10 melanoma cells. Mechanistically, we demonstrate nuclear FAK associated with CDK4/6 and promoted their ubiquitination and proteasomal degradation through recruitment of CDC homolog 1 (CDH1), an activator and substrate recognition subunit of the anaphase-promoting complex/cyclosome E3 ligase complex. We found the FAK N-terminal FERM domain acts as a scaffold to bring CDK4/6 and CDH1 within close proximity. However, overexpression of nonnuclear-localizing mutant FAK FERM failed to function as a scaffold for CDK4/6 and CDH1. Furthermore, shRNA knockdown of CDH1 increased CDK4/6 protein expression and blocked FAK inhibitor–induced reduction of CDK4/6 in B16F10 cells. In vivo, we show that pharmacological FAK inhibition reduced B16F10 tumor size, correlating with increased FAK nuclear localization and decreased CDK4/6 expression compared with vehicle controls. In patient-matched healthy skin and melanoma biopsies, we found FAK was mostly inactive and nuclear localized in healthy skin, whereas melanoma lesions showed increased active cytoplasmic FAK and elevated CDK4 expression. Taken together, our data demonstrate that FAK inhibition blocks tumor proliferation by inducing G1 arrest, in part through decreased CDK4/6 protein stability by nuclear FAK.  相似文献   

11.
Prostate cancer (PCa) is one of the major health problems of the aging male. The roles of dysregulated microRNAs in PCa remain unclear. In this study, we mined the public published data and found that miR-487a-3p was significantly downregulated in 38 pairs of clinical prostate tumor tissues compared with the normal tissues. We further verified this result by in situ hybridization on tissue chip and quantitative real-time polymerase chain reaction (qRT-PCR) in PCa/normal cells. miR-487a-3p targeting of cyclin D1 (CCND1) was identified using bioinformatics, qRT-PCR and western blot analyses. The cellular proliferation, cell cycle, migration, and invasion were assessed by cell counting kit-8, flow cytometry analysis and transwell assay. We discovered that overexpression of miR-487a-3p suppressed PCa cell growth, migration, invasion by directly targeting CCND1. Knockdown of CCND1 in PCa cells showed similar results. Meanwhile, the expression level of CCND1 was significantly upregulated in the PCa tissues and cell lines, which presented negative correlation with the expression of miR-487a-3p. More important, we demonstrated significantly reduced growth of xenograft tumors of stable miR-487a-3p-overexpressed human PCa cells in nude mice. Taken together, for the first time, our results revealed that miR-487a-3p as a tumor suppressor of PCa could target CCND1. Our finding might reveal miR-487a-3p could be potentially contributed to the pathogenesis and a clinical biomarker or the new potential therapeutic target of PCa.  相似文献   

12.
Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor.  相似文献   

13.
Cyclin-dependent kinase 4 (CDK4) is known to be a 33 kD protein that drives G1 phase progression of the cell cycle by binding to a CCND protein to phosphorylate RB proteins. Using different CDK4 antibodies in western blot, we detected 2 groups of proteins around 40 and 33 kD, respectively, in human and mouse cells; each group often appeared as a duplet or triplet of bands. Some CDK4 shRNAs could decrease the 33 kD wild-type (wt) CDK4 but increase some 40 kD proteins, whereas some other shRNAs had the opposite effects. Liquid chromatography–mass spectrometry/mass spectrometry analysis confirmed the existence of CDK4 isoforms smaller than 33 kD but failed to identify CDK4 at 40 kD. We cloned one CDK4 mRNA variant that lacks exon 2 and encodes a 26 kD protein without the first 74 amino acids of the wt CDK4, thus lacking the ATP binding sequence and the PISTVRE domain required for binding to CCND. Co-IP assay confirmed that this ΔE2 protein lost CCND1- and RB1-binding ability. Moreover, we found, surprisingly, that the wt CDK4 and the ΔE2 could inhibit G1–S progression, accelerate S–G2/M progression, and enhance or delay apoptosis in a cell line-specific manner in a situation where the cells were treated with a CDK4 inhibitor or the cells were serum-starved and then replenished. Hence, CDK4 seems to be expressed as multiple proteins that react differently to different CDK4 antibodies, respond differently to different shRNAs, and, in some situations, have previously unrecognized functions at the S–G2/M phases of the cell cycle via mechanisms independent of binding to CCND and RB.  相似文献   

14.
肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)是一种转移率高、预后差的细胞代谢性疾病,对其有效诊疗及预后分子标志物的研究十分重要。葡萄糖6-磷酸脱氢酶(glucose 6-phosphatedehydrogenase, G6PD)在ccRCC中高表达,并提示患者不良预后,其促进ccRCC细胞增殖的分子机制有待进一步揭示。本研究发现,降低G6PD可抑制细胞周期G1/S期转化并显著抑制ccRCC细胞增殖。G6PD可在细胞水平调控G1/S期转化及增殖相关因子Cyclin D1,CDK4,CDK6,Cyclin E1和CDK2基因表达。TCGA数据库分析结果表明,ccRCC 中Cyclin D1,Cyclin E1 和 CDK2的mRNA 水平显著升高,而CDK4表达无明显差异,CDK6表达却显著降低。相关性分析结果显示,G6PD与Cyclin D1呈显著负相关(P<0.0001),G6PD与CDK4,CDK6之间无显著相关性(P>0.05),G6PD与Cyclin E1(P<0.0001)以及CDK2(P<0.05)显著正相关。进一步免疫组化检测结果表明,Cyclin E1和 CDK2在ccRCC肿瘤组织中表达显著升高。生存预后分析结果显示,Cyclin D1高表达提示ccRCC患者整体预后更为良好,CDK4和CDK6表达水平在ccRCC患者总生存率预测中无意义;而Cyclin E1和CDK2高表达均可提示ccRCC患者预后不良。进一步细胞水平检测发现,Cyclin E1、CDK2表达降低可显著逆转G6PD促进ccRCC细胞增殖的能力。综上,与增殖相关因子Cyclin D1,CDK4和CDK6相比,G6PD有可能通过促进Cyclin E1和CDK2表达升高而发挥促进 ccRCC肿瘤细胞增殖的作用,并且这3者的异常高表达有望成为ccRCC患者不良预后的独立生存预测因素。  相似文献   

15.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

16.
CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3′-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.  相似文献   

17.
Cyclin D1 (CCND1), a mediator of cell cycle control, has a G870A polymorphism which results in the formation of two splicing variants: full-length CCND1 (CCND1a) and C-terminally truncated CCND1 species (CCND1b). However, the role of CCND1a and CCND1b variants in cancer chemoresistance remains unknown. Therefore, this study aimed to explore the molecular mechanism of alternative splicing of CCND1 in breast cancer (BC) chemoresistance. To address the contribution of G870A polymorphism to the production of CCND1 variants in BC chemoresistance, we sequenced the G870A polymorphism and analysed the expressions of CCND1a and CCND1b in MCF-7 and MCF-7/ADM cells. In comparison with MCF-7 cells, MCF-7/ADM cells with the A allele could enhance alternative splicing with the increase of SC-35, upregulate the ratio of CCND1b/a at both mRNA and protein levels, and activate the CDK4/CyclinD1-pRB-E2F1 pathway. Furthermore, CCND1b expression and the downstream signalling pathway were analysed through Western blotting and cell cycle in MCF-7/ADM cells with knockdown of CCND1b. Knockdown of CCND1b downregulated the ratio of CCND1b/a, demoted cell proliferation, decelerated cell cycle progression, inhibited the CDK4/CyclinD1-pRB-E2F1 pathway and thereby decreased the chemoresistance of MCF-7/ADM cells. Finally, CCND1 G870A polymorphism, the alternative splicing of CCDN1 was detected through Sequenom Mass ARRAY platform, Sanger sequencing, semi-quantitative RT-PCR, Western blotting and immunohistochemistry in clinical BC specimens. The increase of the ratio of CCND1b/a caused by G870A polymorphism was involved in BC chemoresistance. Thus, these findings revealed that CCND1b/a ratio caused by the polymorphism is involved in BC chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway.  相似文献   

18.
MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3′-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3′-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.  相似文献   

19.
MicroRNAs (miRs) have been recently shown to be heavily involved in the development of alcoholic liver disease (ALD) and suggested as a potential therapeutic target in ALD. The miR‐34a was consistently reported to be significantly elevated in several ALD rodent models, but it remains unclear how miR‐34a modulates the cellular behaviours of hepatocytes in ALD development and progression. This study aims to characterize alcohol‐induced miR‐34a impact on hepatocytes growth and apoptosis. The miRNA array was performed to assess changes in miRNA after chronic alcohol feeding. Liver and blood samples were used to examine ALD progression. The miR‐34a was overexpressed in human hepatocytes to evaluate its impact on cell growth and apoptosis. Real‐time quantitative PCR and Western blot were used to determine the growth and apoptosis molecular signalling pathways associated with miR‐34a. Alcohol feeding significantly promoted fatty liver progression, serum ALT levels, apoptosis and miR‐34a expression in rat liver. Overexpression of miR‐34a in human hepatocytes suppressed cell growth signallings, including c‐Met, cyclin D1 and cyclin‐dependent kinase 6 (CDK6). The miR‐34a might also inhibit the expression of sirtuin 1 (Sirt1) and its target, B‐cell lymphoma 2. Interestingly, the expression of miR‐34a reverses the suppressive effects of ethanol on cell growth. But, miR‐34a promotes hepatocyte senescence and apoptosis. Although the miR‐34a‐mediated down‐regulation of cell growth‐associated genes may contribute to cell growth retardation, other miR‐34a targets, such as Sirt1, may reverse this phenotype. Future studies will be needed to clarify the role of miR‐34a in ALD progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号