首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
All the aromatic proton resonances in the 500-MHz NMR spectra of Lactobacillus casei dihydrofolate reductase have been assigned for several of its complexes with inhibitors. For the complexes with methotrexate and trimethoprim this was achieved by using a combination of NMR techniques in conjunction with a selectively deuterated protein designed to simplify the spectra such that nuclear Overhauser effect (NOE) connections could be detected with greater ease and certainty. By correlating these NOE data with crystal structure data on related complexes it was possible to assign all the aromatic resonances and to extend these assignments to spectra of other complexes of dihydrofolate reductase. The conformation-dependent chemical shifts observed for many of the resonances could be explained qualitatively, but not quantitatively, in terms of ring-current shifts. The discrepancies between calculated ring-current shifts and the observed conformation-dependent shifts could not in general be accounted for satisfactorily in terms of carbonyl-group anisotropic shielding contributions calculated using presently available models. In the case of the H delta 1, delta 2 protons of Phe30 some of the discrepancy probably results from a difference in the conformation of the Phe ring between the solution and crystal states.  相似文献   

2.
Duff MR  Grubbs J  Serpersu E  Howell EE 《Biochemistry》2012,51(11):2309-2318
Previous osmotic stress studies on the role of solvent in two structurally unrelated dihydrofolate reductases (DHFRs) found weaker binding of dihydrofolate (DHF) to either enzyme in the presence of osmolytes. To explain these unusual results, weak interactions between DHF and osmolytes were proposed, with a competition between osmolyte and DHFR for DHF. High osmolyte concentrations will inhibit binding of the cognate pair. To evaluate this hypothesis, we devised a small molecule approach. Dimerization of folate, monitored by nuclear magnetic resonance, was weakened 2-3-fold upon addition of betaine or dimethyl sulfoxide (DMSO), supporting preferential interaction of either osmolyte with the monomer (as it possesses a larger surface area). Nuclear Overhauser effect (NOE) spectroscopy experiments found a positive NOE for the interaction of the C3'/C5' benzoyl ring protons with the C9 proton in buffer; however, a negative NOE was observed upon addition of betaine or DMSO. This change indicated a decreased tumbling rate, consistent with osmolyte interaction. Osmotic stress experiments also showed that betaine, DMSO, and sucrose preferentially interact with folate. Further, studies with the folate fragments, p-aminobenzoic acid and pterin 6-carboxylate, revealed interactions for both model compounds with betaine and sucrose. In contrast, DMSO was strongly excluded from the pterin ring but preferentially interacted with the p-aminobenzoyl moiety. These interactions are likely to be important in vivo because of the crowded conditions of the cell where weak contacts can more readily compete with specific binding interactions.  相似文献   

3.
Two protein fragments containing the DNA-binding domain (DBD) of the glucocorticoid receptor (GR) have been studied by two-dimensional 1H NMR spectroscopy. The two peptides (93 and 115 residues, respectively) contain a common segment corresponding to residues C440-I519 of the rat GR or residues C421-I500 of the human GR and include two Zn-binding "finger" domains. The structures of this segment are almost identical in the two protein fragments, as judged from chemical shifts and sequential NOE connectivities. More than 90% of all observable 1H resonances within a 71-residue segment encompassing C440-R510 (rat GR) could be sequentially assigned by standard techniques, and stereospecific assignments could be made for the methyl groups in four valine residues within this segment. Sequential NOE connectivities indicate several elements of secondary structure including two alpha-helical segments consisting of residues S459-E469 and P493-G504, a type I reverse turn between residues R479 and C482, a type II reverse turn between residues L475 and G478, and several regions of extended peptide conformation. No evidence for alpha-helical conformation was found within the two putative zinc-finger domains, indicating that the structures of these domains differ from that of TFIIIA-type zinc fingers. The observation of some very slowly exchanging amide protons in the N-terminal (CI) domain of the DBD in combination with slow rotation of the Y452 aromatic ring indicates that this domain has a restricted conformational flexibility compared to the C-terminal (CII) domain. We also observe several long-range NOE connectivities within C440-R510, suggesting that the sequential assignments presented here will provide a basis for a complete structure determination of this segment of the GR.  相似文献   

4.
Sequence-specific assignments are reported for the 500-MHz 1H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure of Sh I was defined on the basis of the pattern of sequential NOE connectivities, NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel beta-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a beta-bulge at residues 17 and 18 and a reverse turn, probably a type II beta-turn, involving residues 27-30. No evidence of alpha-helical structure was found.  相似文献   

5.
D Marion  F Guerlesquin 《Biochemistry》1992,31(35):8171-8179
Two-dimensional nuclear magnetic resonance spectroscopy was used to assign the proton resonances of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenbourough at 37 degrees C and pH = 5.9. Only a few side-chain protons were not identified because of degeneracy or overlap. The spin systems of the 79 amino acids were identified by DQF-COSY and HOHAHA spectra in H2O and D2O. Sequential assignments were obtained from NOESY connectivities between adjacent amide, C alpha H, and C beta H protons. From sequential NH(i)----NH(i + 1) and long-range C alpha H(i)----NH(i + 3) connectivities, four stretches of helices were identified (2----8, 34----46, 53----59, 67----77). Long-range NOE between residues in three different helices provide qualitative information on the tertiary structure, in agreement with the general folding pattern of cytochrome c. The heme protons, including the propionate groups, were assigned, and the identification of Met 57 as sixth heme ligand was established. The dynamical behavior of the ring protons of the six tyrosines was analyzed in detail in terms of steric hindrance. The NMR data for ferrocytochrome c553 are consistent with the X-ray structure for the homologous cytochrome from D. vulgaris Miyazaki. On the basis of the secondary structure element and of observed chemical shift due to the heme ring current, a structural alignment of eukaryotic and prokaryotic cytochromes c is proposed.  相似文献   

6.
D R Hare  B R Reid 《Biochemistry》1982,21(8):1835-1842
The NMR resonances from the hydrogen-bonded ring NH protons in the dihydrouridine stem of Escherichia colt tRNA1Val have been assigned by experiments involving the nuclear Overhauser effect (NOE) between adjacent base pairs. Irradiation of the 8-14 tertiary resonance produced a NOE to base pair 13. Irradiation of the CG13 ring NH produced NOEs to base pairs 12 and 14. Similarly, base pair 12 was shown to be dipolar coupled to 11 and 13, and base pair 11 was found to be coupled to 10 and 12. These sequential connectivities led to the assignment of CG13 at -13.05 ppm, UA12 at -13.84 ppm, CG11 at -12.23 ppm, and GC10 at -12.60 ppm. The results are compared with previous, less direct assignments for these four base pairs and with the expected proton positions from the crystal structure coordinates for this helix.  相似文献   

7.
The specific assignment of resonances in the 300-MHz 1H nuclear magnetic resonance (NMR) spectrum of anthopleurin-A, a polypeptide cardiac stimulant from the sea anemone Anthopleura xanthogrammica, is described. Assignments have been made using two-dimensional NMR techniques, in particular the method of sequential assignments, where through-bond and through-space connectivities to the peptide backbone NH resonances are used to identify the spin systems of residues adjacent in the amino acid sequence. Complete assignments have been made of the resonances from 33 residues out of a total of 49, and partial assignments of a further 3. The resonances from several of the remaining residues have been identified but not yet specifically assigned. A complicating factor in making these assignments is the conformational heterogeneity exhibited by anthopleurin-A in solution. The resonances from a number of amino acid residues in the minor conformer have also been assigned. These assignments contribute towards identification of the origin of this heterogeneity, and permit some preliminary conclusions to be drawn regarding the secondary structure of the polypeptide.  相似文献   

8.
Assignments in the 1H NMR spectrum for more than 120 resonances arising from 38 of the 130 amino acid residues of human lysozyme are presented. Assignments have been achieved using a combination of one and two-dimensional NMR techniques. Two-dimensional double-quantum correlated spectroscopy and relayed coherence transfer spectroscopy were found to be particularly useful for the identification of spin systems in the aromatic and methyl regions of the spectrum. These spin systems were assigned to specific residues in human lysozyme with reference to the X-ray crystal structure using one-dimensional nuclear Overhauser enhancement (NOE) data and a computer-based search procedure. Unique assignments were found for resonances of 27 amino acid residues even when a distance constraint on NOE effects of 0.7 nm was used in the search procedure; for the remaining residues closer constraints or additional information were required. The assignments include all but one of the resonances in the aromatic region of the spectrum and all the methyl group resonances in the region upfield of 0.6 ppm. The assignments presented here provide a basis for a comparison of the NMR spectra of human lysozyme and the more widely studied hen lysozyme.  相似文献   

9.
Two-dimensional 1H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike those of the folate complex, are severely broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. At 303 K, NOESY spectra with mixing times of 100 ms did not show interconversion between these isomers. However, exchange cross-peaks were observed in a 700-ms NOESY spectrum at 323 K which demonstrated that these isomers are interconverting slowly on the NMR time scale. Many of the side chains with clearly doubled resonances were located in the beta-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.  相似文献   

10.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

11.
Sequence-specific resonance assignments are reported for the 500-MHz 1H-NMR spectrum of the 55-residue neurotoxin B-IV, isolated from the heteronemertine worm Cerebratulus lacteus. A range of two-dimensional homonuclear correlated and NOE spectra was used in making these assignments, which include NH, C alpha H and C beta H resonances, as well as most resonances from longer-chain spin systems, with the exception of the ten Lys residues, where spectral overlap prevented complete, unambiguous assignments. The secondary structure of B-IV was identified from the pattern of sequential (i, i + 1) and medium range (i, i + 2/3/4) NOE connectivities and the location of slowly exchanging backbone amide protons. Two helices are present, incorporating residues 13-26 and 33-49, and the C-terminal five residues form a helix-like structure. A type-I reverse turn, involving residues 28-31 is present in a small loop linking the two major helices, and the N-terminus appears to be unordered at 27 degrees C, although it may adopt a more ordered conformation at lower temperatures. These elements of secondary structure, together with the four disulfide bonds in the protein, provide sufficient information to define the global fold of the molecule in solution. The pH and temperature dependence of the toxin have been investigated by 1H-NMR and the pKa values of several ionisable sidechains determined.  相似文献   

12.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

13.
P R Gooley  R S Norton 《Biopolymers》1986,25(3):489-506
The assignment of a large number of resonances in the 300-MHz 1H-nmr spectrum of the polypeptide neurotoxin Anemonia sulcata toxin I is described. The initial identification of spin systems is made using both one- and two-dimensional nmr spectra. The subsequent assignment of these spin systems to specific residues in the molecule is based largely on the observation in two-dimensional spectra of through-space connectivities between Hα and NH resonances from adjacent residues in the amino acid sequence. Using these techniques, the full spin systems of 22 residues are specifically assigned, together with partial assignments for a further 8. Many of the spin systems from the remaining 16 residues have been defined, although not yet specifically assigned. From the pattern of through-space connectivities between protons from adjacent residues in the sequence, some inferences may be drawn concerning the secondary structure of this polypeptide in aqueous solution.  相似文献   

14.
The backbone 1H and 15N resonances of unligated staphylococcal nuclease H124L (recombinant protein produced in Escherichia coli whose sequence is identical to the nuclease produced by the V8 strain of Staphylococcus aureus) have been assigned by three-dimensional (3D) 1H-15N NOESY-HMQC NMR spectroscopy at 14.1 tesla. The protein sample used in this study was labeled uniformly with 15N to a level greater than 95% by growing the E. coli host on a medium containing [99% 15N]ammonium sulfate as the sole nitrogen source. The assignments include 82% of the backbone 1HN and 1H alpha resonances as well as the 15N resonances of non-proline residues. Secondary structural elements (alpha-helices, beta-sheets, reverse turns, and loops) were determined by analysis of patterns of NOE connectivities present in the 3D spectrum.  相似文献   

15.
16.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

17.
Heteronuclear NMR methods have been used to probe the conformation of four complexes of Escherichia coli dihydrofolate reductase (DHFR) in solution. (1)H(N), (15)N, and (13)C(alpha) resonance assignments have been made for the ternary complex with folate and oxidized NADP(+) cofactor and the ternary complex with folate and a reduced cofactor analog, 5,6-dihydroNADPH. The backbone chemical shifts have been compared with those of the binary complex of DHFR with the substrate analog folate and the binary complex with NADPH (the holoenzyme). Analysis of (1)H(N) and (15)N chemical shifts has led to the identification of marker resonances that report on the active site conformation of the enzyme. Other backbone amide resonances report on the presence of ligands in the pterin binding pocket and in the adenosine and nicotinamide-ribose binding sites of the NADPH cofactor. The chemical shift data indicate that the enzyme populates two dominant structural states in solution, with the active site loops in either the closed or occluded conformations defined by X-ray crystallography; there is no evidence that the open conformation observed in some X-ray structures of E. coli DHFR are populated in solution.  相似文献   

18.
We have investigated the importance of polarization by the enzyme dihydrofolate reductase (DHFR) on its substrates, folate and dihydrofolate, using a series of quantum mechanical (QM) techniques (Hartree-Fock (HF), M?ller-Plesset second-order perturbation theory (MP2), local density approximation (LDA) and generalized gradient approximation (GGA) density functional theory (DFT) calculations) in which the bulk enzyme is included in the calculations as point charges. Polarization, in terms of both charges on components (residues) of the folate and dihydrofolate molecules and changes in the electron density, particularly of the pterin ring of the substrates, and the implications for the catalytic reduction are discussed. Significant differences in polarization behavior are observed for the different theoretical methods employed. The consequences of this, particularly for choosing an appropriate model for quantum mechanical/molecular mechanical (QM/MM) calculations, are pointed out. The HF and MP2 QM methods show small polarizations (approximately 0.04 electrons) of the pterin ring but quite large polarizations with both LDA and GGA DFT methods (0.3-0.5 electrons). This large difference in polarization for both folate and dihydrofolate arises as a result of substantial differences between the charge distributions for the gasphase DFT and HF calculations, specifically the charges on the dianionic glutamate side chain. Some recent literature reports of incorrect representation of anionic systems by DFT methods are noted. The DFT results are similar to the previously reported LDA DFT results of Bajorath et al. predicting a large polarization of the pterin ring of folate (Proteins 9:217-224, 1991) and dihydrofolate (PNAS 88:6423-6426, 1991) of approximately 0.5-0.6 electrons.  相似文献   

19.
Application of two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy to yeast tRNAPhe in H2O solution demonstrates that all imino-proton resonances, related to the secondary structure, and nearly all imino proton resonances, originating from the tertiary structure, can be assigned efficiently by this method. The results corroborate the assignments of the imino-proton resonances of this tRNA as established previously by one-dimensional NOE experiments (only the assignment of base pairs G1 X C72 and C2 X G71 should be reversed). The advantages of two-dimensional NOE spectroscopy over one-dimensional NOE spectroscopy for the assignments of imino-proton resonances and the structure elucidation of tRNA are illustrated and discussed. Furthermore, the use of non-exchangeable proton resonances as probes of the molecular structure is explored.  相似文献   

20.
An 80 amino acid polypeptide corresponding to the DNA-binding domain (DBD) of the human retinoic acid receptor beta (hRAR-beta) has been studied by 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional (2D and 3D) NMR spectroscopy. The polypeptide has two putative zinc fingers homologous to those of the receptors for steroid and thyroid hormones and vitamin D3. The backbone 1H resonances as well as over 90% of the side-chain 1H resonances have been assigned by 1H homonuclear 2D techniques except for the three N-terminal residues. The assignments have been confirmed further by means of 15N-1H heteronuclear 3D techniques, which also yielded the assignments of the 15N resonances. Additionally, stereospecific assignments of methyl groups of five valine residues were made. Sequential and medium-range NOE connectivities indicate several elements of secondary structure including two alpha-helices consisting of residues E26-Q37 and Q61-E70, a short antiparallel beta-sheet consisting of residues P7-F9 and S23-C25, four turns consisting of residues P7-V10, I36-N39, D47-C50, and F69-G72, and several regions of extended peptide conformation. Similarly, two helices are found in the glucocorticoid receptor (GR) DBD in solution [H?rd et al. (1990) Science 249, 157-160] and in crystal [Luisi et al. (1991) Nature 352, 497-505], and in the estrogen receptor (ER) DBD in solution [Schwabe et al. (1990) Nature 348, 458-461], although the exact positions and sizes of the helices differ somewhat. Furthermore, long-range NOEs suggest the existence of a hydrophobic core formed by the two helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号