首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Trypanosoma cruzi cysteine protease cruzipain contains a 130-amino-acid C-terminal extension, in addition to the catalytic domain. Natural cruzipain is a complex of isoforms, because of the simultaneous expression of several genes, and the presence of either high mannose-type, hybrid monoantennary-type or complex biantenary-type oligosacharide chains at Asn255 of the C-terminal extension. Cruzipain and its recombinant form without this extension (cruzain) were studied comparatively in this work. S2 to S2' subsite specificities of these enzymes were examined using four series of substrates derived from the internally quenched fluorescent peptide Abz-KLRFSKQ-EDDnp (Abz, ortho-aminobenzoic acid; EDDnp, N-(2,4-dinitrophenyl)-ethylenediamine). Large differences in the kinetic parameters were not observed between the enzymes; however, Km values were consistently lower for the hydrolysis of most of the substrates by cruzain. No difference in the pH-activity profile between the two enzymes was found, but in 1 m NaCl cruzipain presented a kcat value significantly higher than that of cruzain. The activation energy of denaturation for the enzymes did not differ significantly; however, a negative entropy value was observed for cruzipain denaturation whereas the value for cruzain was positive. We determined the individual rate constants (k1, substrate diffusion; k-1, substrate dissociation; k2, acylation; k3, deacylation) and the respective activation energies and entropies for hydrolysis of Abz-KLRFSKQ-EDDnp determining the temperature dependence of the Michaelis-Menten parameters kcat/Km and kcat as previously described [Ayala, Y.M. & Di Cera, E. (2000) Protein Sci. 9, 1589-1593]. Differences between the two enzymes were clearly detected in the activation energies E1 and E-1, which are significantly higher for cruzipain. The corresponding DeltaS1 and DeltaS-1 were positive and significantly higher for cruzipain than for cruzain. These results indicate the presence of a larger energy barrier for cruzipain relating to substrate diffusion and dissociation, which could be related to the C-terminal extension and/or glycosylation state of cruzipain.  相似文献   

2.
Cruzipain, the major cysteine proteinase from Trypanosoma cruzi, is a member of the papain family that contains a C-terminal domain in the mature enzyme, in addition to a catalytic moiety homologous to papain and some mammalian cathepsins. The native enzyme is expressed as a complex mixture of isoforms and has not been crystallized. Previous attempts to express recombinant mature cruzipain containing the C-terminal domain have failed. For this reason, the three-dimensional structure of the complete mature enzyme is not known, although the structure of a recombinant truncated molecule lacking the C-terminal domain (cruzaindeltac) has been determined. We report here the expression of active, N-glycosylated, complete mature cruzipain in an insect cell/baculovirus system. The purified recombinant enzyme, obtained with a yield of about 0.2 mg/100 ml of culture supernatant, has an apparent molecular mass similar, and an identical N-terminal sequence, compared with the native enzyme. The expressed protein is able to process itself by self-proteolysis, leaving the isolated C-terminal domain, and has kinetic properties similar to those of native cruzipain, although some differences in substrate specificity were found. These results open up the possibility of obtaining recombinant intact mature cruzipain of a quality and in quantity suitable for X-ray crystallography.  相似文献   

3.
Cruzipain, the major cysteine proteinase from Trypanosoma cruzi, is a member of the papain family that contains a C-terminal domain in the mature enzyme, in addition to a catalytic moiety homologous to papain and some mammalian cathepsins. The native enzyme is expressed as a complex mixture of isoforms and has not been crystallized. Previous attempts to express recombinant mature cruzipain containing the C-terminal domain have failed. For this reason, the three-dimensional structure of the complete mature enzyme is not known, although the structure of a recombinant truncated molecule lacking the C-terminal domain (cruzainΔc) has been determined. We report here the expression of active, N-glycosylated, complete mature cruzipain in an insect cell/baculovirus system. The purified recombinant enzyme, obtained with a yield of about 0.2 mg/100 ml of culture supernatant, has an apparent molecular mass similar, and an identical N-terminal sequence, compared with the native enzyme. The expressed protein is able to process itself by self-proteolysis, leaving the isolated C-terminal domain, and has kinetic properties similar to those of native cruzipain, although some differences in substrate specificity were found. These results open up the possibility of obtaining recombinant intact mature cruzipain of a quality and in quantity suitable for X-ray crystallography.  相似文献   

4.
Wang H  Vath GM  Gleason KJ  Hanna PE  Wagner CR 《Biochemistry》2004,43(25):8234-8246
Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to arylamines, hydrazines, and their N-hydroxylated arylamine metabolites. The recently determined three-dimensional structures of prokaryotic NATs have revealed a cysteine protease-like Cys-His-Asp catalytic triad, which resides in a deep and hydrophobic pocket. This catalytic triad is strictly conserved across all known NATs, including hamster NAT2 (Cys-68, His-107, and Asp-122). Treatment of NAT2 with either iodoacetamide (IAM) or bromoacetamide (BAM) at neutral pH rapidly inactivated the enzyme with second-order rate constants of 802.7 +/- 4.0 and 426.9 +/- 21.0 M(-1) s(-1), respectively. MALDI-TOF and ESI mass spectral analysis established that Cys-68 is the only site of alkylation by IAM. Unlike the case for cysteine proteases, no significant inactivation was observed with either iodoacetic acid (IAA) or bromoacetic acid (BAA). Pre-steady state and steady state kinetic analysis with p-nitrophenyl acetate (PNPA) and NAT2 revealed a single-exponential curve for the acetylation step with a second-order rate constant of (1.4 +/- 0.05) x 10(5) M(-1) s(-1), followed by a slow linear rate of (7.85 +/- 0.65) x 10(-3) s(-1) for the deacetylation step. Studies of the pH dependence of the rate of inactivation with IAM and the rate of acetylation with PNPA revealed similar pK(a)(1) values of 5.23 +/- 0.09 and 5.16 +/- 0.04, respectively, and pK(a)(2) values of 6.95 +/- 0.27 and 6.79 +/- 0.25, respectively. Both rates reached their maximum values at pH 6.4 and decreased by only 30% at pH 9.0. Kinetic studies in the presence of D(2)O revealed a large inverse solvent isotope effect on both inactivation and acetylation of NAT2 [k(H)(inact)/k(D)(inact) = 0.65 +/- 0.02 and (k(2)/K(m)(acetyl))(H)/(k(2)/K(m)(acetyl))(D) = 0.60 +/- 0.03], which were found to be identical to the fractionation factors (Phi) derived from proton inventory studies of the rate of acetylation at pL 6.4 and 8.0. Substitution of the catalytic triad Asp-122 with either alanine or asparagine resulted in the complete loss of protein structural integrity and catalytic activity. From these results, it can be concluded that the catalytic mechanism of NAT2 depends on the formation of a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)). However, in contrast to the case with cysteine proteases, a pH-dependent protein conformational change is likely responsible for the second pK(a), and not deprotonation of the thiolate-imidazolium ion. In addition, substitutions of the triad aspartate are not tolerated. The enzyme appears, therefore, to be engineered to rapidly form a stable acetylated species poised to react with an arylamine substrate.  相似文献   

5.
Liu XW  Sok DE 《Biological chemistry》2004,385(7):633-637
Protein disulfide isomerase (PDI) is known to contain the thioredoxin box motif with a low pKa cysteine residue. To investigate the reactivity of PDI with thiol modifiers at low physiological pHs, either the reduced (PDIred) or oxidized form (PDIoxid) of PDI was exposed to various alkylating ragents. When PDI was incubated with iodoacetamide at pH 6.3 for 30 min at 38 degrees C, a remarkable inactivation (>90%) of PDIred was caused by iodoacetamide (IC50=8 microM). However, PDIoxid was only slightly inactivated (approximately 18%) by iodoacetamide. Similarly, PDIred was significantly inactivated by N-ethylmaleimide (NEM), but PDIoxid was not. When the inactivation by these alkylators was analyzed by pseudo-first order kinetics, NEM (k3=1.75x10(-2) s(-1); K(i)=124 microM) was observed to be more potent than iodoacetamide (k3=9.1x10(-3) s(-1); K(i)=311 microM). Interestingly, the inactivation of PDIred by iodoacetamide was greater at pH 6.3 than pH 7.0, in contrast to a similar inactivation potency of NEM at both pHs. Moreover, the maximal inactivation of PDIred or PDIoxid by iodoacetamide was mainly observed around pH 6.0. In addition, PDIred was found to be inactivated by acrolein (IC50=10 microM) at pH 6.3, and this inactivation was also greater at pH 6.3 than at pH 7. Based on these results, we suggest that PDIred is susceptible to inactivation by alkylators including endogenous alpha,beta-unsaturated aldehydes at low physiological pHs.  相似文献   

6.
The Plasmodium falciparum cysteine protease falcipain-2 is a trophozoite hemoglobinase and potential antimalarial drug target. Unlike other studied papain family proteases, falcipain-2 does not require its prodomain for folding to active enzyme. Rather, folding is mediated by an amino-terminal extension of the mature protease. As in related enzymes, the prodomain is a potent inhibitor of falcipain-2. We now report further functional evaluation of the domains of falcipain-2 and related plasmodial proteases. The minimum requirement for folding of falcipain-2 and four related plasmodial cysteine proteases was inclusion of a 14-15-residue amino-terminal folding domain, beginning with a conserved Tyr. Chimeras of the falcipain-2 catalytic domain with extensions from six other plasmodial proteases folded normally and had kinetic parameters (k(cat)/K(m) 124,000-195,000 M(-1) s(-1)) similar to those of recombinant falcipain-2 (k(cat)/K(m) 120,000 M(-1) s(-1)), indicating that the folding domain is functionally conserved across the falcipain-2 subfamily. Correct folding also occurred when the catalytic domain was refolded with a separate prodomain-folding domain construct but not with an isolated folding domain peptide. Thus, the prodomain mediated interaction between the other two domains when they were not covalently bound. The prodomain-catalytic domain interaction was independent of the active site, because it was blocked by free inactive catalytic domain but not by the active site-binding peptide leupeptin. The folded catalytic domain retained activity after purification from the prodomain-folding domain construct (k(cat)/K(m) 168,000 M(-1) s(-1)), indicating that the folding domain is not required for activity once folding has been achieved. Activity was lost after nonreducing gelatin SDS-PAGE but not native gelatin PAGE, indicating that correct disulfide bonds are insufficient to direct appropriate folding. Our results identify unique features of the falcipain-2 subfamily with independent mediation of activity, folding, and inhibition.  相似文献   

7.
Otubains are a recently discovered family of cysteine proteases that participate in the ubiquitin pathway. Here, we partially characterized the biochemical properties of a cysteine protease of Cryptosporidium parvum, which is closely related to otubains. The gene encoding otubain-like cysteine protease of C. parvum (CpOTU) contained the aspartate, cysteine and histidine residues that form the catalytic triad of otubains. The modified ubiquitin-associated domain and LxxL motif were identified in CpOTU. The recombinant CpOTU showed the isopeptidase activity at neutral pH values and its activity was effectively inhibited by ubiquitin aldehyde, N-ethylmaleimide and iodoacetic acid. Interestingly, CpOTU had an unusual C-terminal extension of 217 amino acids compared to mammalian otubains, and the C-terminal extension is essential for the activity of the enzyme. Expression of CpOTU peaked in the oocyst stage of the parasite, which suggested its potential physiological role for the oocyst stage.  相似文献   

8.
Papain-like cysteine proteases of pathogenic protozoa play important roles in parasite growth, differentiation and host cell invasion. The main cysteine proteases of Trypanosoma cruzi (cruzipain) and of Trypanosoma brucei (brucipain) are validated targets for the development of new chemotherapies. These proteases are synthesized as precursors and activated upon removal of the N-terminal prodomain. Here we report potent and selective inhibition of cruzipain and brucipain by the recombinant full-length prodomain of cruzipain. The propeptide did not inhibit human cathepsins S, K or B or papain at the tested concentrations, and moderately inhibited human cathepsin V. Human cathepsin F was very efficiently inhibited (K(i) of 32 pm), an interesting finding indicating that cruzipain propeptide is able to discriminate cathepsin F from other cathepsin L-like enzymes. Comparative structural modeling and analysis identified the interaction between the beta1p-alpha3p loop of the propeptide and the propeptide-binding loop of mature enzymes as a plausible cause of the observed inhibitory selectivity.  相似文献   

9.
In addition to its catalytic domain, phosphoinsositide-dependent protein kinase-1 (PDK1) contains a C-terminal pleckstrin homology (PH) domain, which binds the membrane-bound phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P3] second messenger. Here, we report in vitro kinetic, phosphopeptide mapping, and oligomerization studies that address the role of the PH domain in regulating specific autophosphorylation events, which are required for PDK1 catalytic activation. First, 'inactive' unphosphorylated forms of N-terminal His6 tagged full length (His6-PDK1) and catalytic domain constructs [His6-PDK1(Delta PH)] were generated by treatment with Lambda protein phosphatase (lambda PP). Reconstitution of lambda PP-treated His6-PDK1(Delta PH) catalytic activity required activation loop Ser-241 phosphorylation, which occurred only upon trans-addition of 'active' PDK1 with an apparent bimolecular rate constant of (app)k1(S241) = 374+/-29 M(-1) s(-1). In contrast, full length lambda PP-treated His6-PDK1 catalyzed Ser-241 cis-autophosphorylation with an apparent first-order rate constant of (app)k1(S241) = (5.0+/-1.5) x 10(-4) s(-1) but remained 'inactive'. Reconstitution of lambda PP-treated His(6)-PDK1 catalytic activity occurred only when autophosphorylated in the presence of PI(3,4,5)P3 containing vesicles. PI(3,4,5)P3 binding to the PH domain activated apparent first-order Ser-241 autophosphorylation by 20-fold [(app)k1(S241) = (1.1+/-0.1) x 10(-2) s(-1)] and also promoted biphasic Thr-513 trans-autophosphorylation [(app)k2(T513) = (4.9+/-1.1) x 10(2) M(-1) s(-1) and(app)k3(T513) = (1.5+/-0.2) x 10(3) M(-1) s(-1)]. The results of mutagenesis studies suggest that Thr-513 phosphorylation may cause dissociation of autoinhibitory contacts formed between the contiguous regulatory PH and catalytic kinase domains.  相似文献   

10.
A filter binding assay to measure affinity of [3H-allyl]17-allylamino geldanamycin ([3H]AAG) for the ATP binding site of the N-terminal domain of human Hsp90alpha (hHsp90alpha9-236) was developed. Diethylaminoethyl cellulose or glass fiber filters impregnated with polyethyleneimine were used to capture the [3H]AAG-Hsp90 complex, and conditions which washed >98% of free [3H]AAG from the filters were developed. The complex formed at a rapid rate (k(on)=2.5 x 10(7)Lmol(-1) x s(-1)) and dissociated with a half-life of 2.3 min (k(off)=5 x 10(-3) x s(-1)). hHsp90alpha9-236 bound to [3H]AAG with a K(d) value of 0.4+/-0.1 microM. [3H]AAG had similar affinities for full-length hHsp90alpha and for hHsp90alpha9-236 variants containing biotinylated N-terminal biotinylation signal sequences and N- or C-terminal His(6) tags. Geldanamycin, ADP, ATP, and radicicol-all known to bind to the ATP domain of Hsp90-competed with [3H]AAG for binding to hHsp90alpha9-236, showing K(d) values in good agreement with reported values.  相似文献   

11.
The enzymatic hydrolysis of butyrylcholine, catalyzed by horse serum butyrylcholinesterase (EC 3.1.1.8), was studied at 37 degrees C in Tris buffer (pH 7.5) by flow microcalorimetry. A convolution procedure, using the Gamma distribution to represent the impulse response of the calorimeter, was developed to analyze the microcalorimetric curves. After correction for buffer protonation, the hydrolysis reaction was found to be slightly endothermic, with Delta H=+9.8 kJ mol(-1). Enzyme kinetics was studied with both the differential and integrated forms of the Michaelis equation with equivalent results: Michaelis constant K(m)=3.3mM, catalytic constant k(cat)=1.7 x 10(3)s(-1), bimolecular rate constant k(s)=5.1 x 10(5)M(-1)s(-1). The reaction product, choline, was found to be a competitive inhibitor with a dissociation constant K(i)=9.1mM. Betaine had a slightly higher affinity for the enzyme, but the inhibition was only partial. This study confirms the usefulness of microcalorimetry for the kinetic study of enzymes and their inhibitors.  相似文献   

12.
The unfolding and refolding of creatine kinase (ATP:creatine N-phosphotransferase (CK), EC 2.7.3.2) during denaturation and reactivation by trifluoroethanol (TFE) have been studied. Significant aggregation was observed when CK was denatured at TFE concentrations between 10% and 40% (v/v). 50% TFE (v/v) was used to study the denaturation and unfolding of CK. The activity loss of CK was a very quick process, as was the marked conformational changes during denaturation followed by fluorescence emission spectra and far-ultraviolet CD spectra. DTNB modification and size exclusion chromatography were used to find that CK dissociated and was in its monomer state after denaturation with 50% TFE. Reactivation and refolding were observed after 80-fold dilution of the denatured CK into 0.05 M Tris-HCl buffer, pH 8.0. The denatured CK recovered about 38% activity following a two phase course (k(1)=4.82+/-0.41x10(-3) s(-1), k(2)=0.60+/-0.01x10(-3) s(-1)). Intrinsic fluorescence maximum intensity changes showed that the refolding process also followed biphasic kinetics (k(1)=4.34+/-0.27x10(-3) s(-1), k(2)=0.76+/-0.02x10(-3) s(-1)) after dilution into the proper solutions. The far-ultraviolet CD spectra ellipticity changes at 222 nm during the refolding process also showed a two phase course (k(1)=4.50+/-0.07x10(-3) s(-1), k(2)=1.13+/-0.05x10(-3) s(-1)). Our results suggest that TFE can be used as a reversible denaturant like urea and GuHCl. The 50% TFE induced CK denaturation state, which was referred to as the 'TFE state', and the partially refolded CK are compared with the molten globule state. The aggregation caused by TFE during denaturation is also discussed in this paper.  相似文献   

13.
NO-donors block Plasmodium, Trypanosoma, and Leishmania life cycle by inactivating parasite enzymes, e.g., cysteine proteinases. In this study, the inactivation of falcipain, cruzipain, and Leishmania infantum cysteine proteinase by the NO-donor 4-(phenylsulfonyl)-3-((2-(dimethylamino)ethyl)thio)-furoxan oxalate (SNO-102) is reported. SNO-102 inactivates dose- and time-dependently parasite cysteine proteinases; one equivalent of NO, released from SNO-102, inactivates one equivalent of L. infantum cysteine proteinase. With SNO-102 in excess over the parasite cysteine proteinase, the time course of enzyme inhibition corresponds to a pseudo-first-order reaction for more than 90% of its course. The concentration dependence of the pseudo-first-order rate constant is second-order at low SNO-102 concentration but tends to first-order at high NO-donor concentration. This behavior may be explained by a relatively fast pre-equilibrium followed by a limiting pseudo-first order process. Kinetic parameters of L. infantum cysteine proteinase inactivation by SNO-102 are affected by the acidic pK shift of one apparent ionizing group (from pK(unl)=5.8 to pK(lig)=4.7) upon enzyme inhibition. Falcipain, cruzipain and L. infantum cysteine proteinase inactivation is prevented and reversed by dithiothreitol and L-ascorbic acid. Furthermore, the fluorogenic substrate N-alpha-benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) protects parasite cysteine proteinases from inactivation by SNO-102. The absorption spectrum of the inactive S-nitrosylated SNO-102-treated L. infantum cysteine proteinase displays a maximum at about 340 nm. These results indicate that the parasite cysteine proteinase inactivation by SNO-102 occurs via the NO-mediated S-nitrosylation of the Cys25 catalytic residue.  相似文献   

14.
This study demonstrates that endopin 2 is a unique secretory vesicle serpin that displays cross-class inhibition of cysteine and serine proteases, indicated by effective inhibition of papain and elastase, respectively. Homology of the reactive site loop (RSL) domain of endopin 2, notably at P1-P1' residues, with other serpins that inhibit cysteine and serine proteases predicted that endopin 2 may inhibit similar proteases. Recombinant N-His-tagged endopin 2 inhibited papain and elastase with second-order rate constants (k(ass)) of 1.4 x 10(6) and 1.7 x 10(5) M(-1) s(-1), respectively. Endopin 2 formed SDS-stable complexes with papain and elastase, a characteristic property of serpins. Interactions of the RSL domain of endopin 2 with papain and elastase were indicated by cleavage of endopin 2 near the predicted P1-P1' residues by these proteases. Endopin 2 did not inhibit the cysteine protease cathepsin B, or the serine proteases chymotrypsin, trypsin, plasmin, and furin. Endopin 2 in neuroendocrine chromaffin cells was colocalized with the secretory vesicle component (Met)enkephalin by confocal immunonfluorescence microscopy, and was present in isolated secretory vesicles (chromaffin granules) from chromaffin cells as a glycoprotein of 72-73 kDa. Moreover, regulated secretion of endopin 2 from chromaffin cells was induced by nicotine and KCl depolarization. Overall, these results demonstrate that the serpin endopin 2 possesses dual specificity for inhibiting both papain-like cysteine and elastase-like serine proteases. These findings demonstrate that endopin 2 inhibitory functions may occur in the regulated secretory pathway.  相似文献   

15.
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid.  相似文献   

16.
Myeloperoxidase (MPO) is the most abundant protein in neutrophils and plays a central role in microbial killing and inflammatory tissue damage. Because most of the non-steroidal anti-inflammatory drugs and other drugs contain a thiol group, it is necessary to understand how these substrates are oxidized by MPO. We have performed transient kinetic measurements to study the oxidation of 14 aliphatic and aromatic mono- and dithiols by the MPO intermediates, Compound I (k3) and Compound II (k4), using sequential mixing stopped-flow techniques. The one-electron reduction of Compound I by aromatic thiols (e.g. methimidazole, 2-mercaptopurine and 6-mercaptopurine) varied by less than a factor of seven (between 1.39 +/- 0.12 x 10(5) M(-1) s(-1) and 9.16 +/- 1.63 x 10(5) M(-1) s(-1)), whereas reduction by aliphatic thiols was demonstrated to depend on their overall net charge and hydrophobic character and not on the percentage of thiol deprotonation or redox potential. Cysteamine, cysteine methyl ester, cysteine ethyl ester and alpha-lipoic acid showed k3 values comparable to aromatic thiols, whereas a free carboxy group (e.g. cysteine, N-acetylcysteine, glutathione) diminished k3 dramatically. The one-electron reduction of Compound II was far more constrained by the nature of the substrate. Reduction by methimidazole, 2-mercaptopurine and 6-mercaptopurine showed second-order rate constants (k4) of 1.33 +/- 0.08 x 10(5) M(-1) s(-1), 5.25 +/- 0.07 x 10(5) M(-1) s(-1) and 3.03 +/- 0.07 x 10(3) M(-1) s(-1). Even at high concentrations cysteine, penicillamine and glutathione could not reduce Compound II, whereas cysteamine (4.27 +/- 0.05 x 10(3) M(-1) s(-1)), cysteine methyl ester (8.14 +/- 0.08 x 10(3) M(-1) s(-1)), cysteine ethyl ester (3.76 +/- 0.17 x 10(3) M(-1) s(-1)) and alpha-lipoic acid (4.78 +/- 0.07 x 10(4) M(-1) s(-1)) were demonstrated to reduce Compound II and thus could be expected to be oxidized by MPO without co-substrates.  相似文献   

17.
Protease expression among TCI and TCII field isolates was analysed. Gelatin-containing gels revealed hydrolysis bands with molecular masses ranging from 45 to 66 kDa. The general protease expression profile showed that TCII isolates presented higher heterogeneity compared to TCI. By utilizing protease inhibitors, we showed that all active proteases at acid pH are cysteine-proteases and all proteases active at alkaline pH are metalloproteases. However, the expression of cruzipain, the T. cruzi major cysteine-protease, did not reproduce a heterogeneous TCII cysteine zymogram profile. Dendogram analyses based on presence/absence matrices of proteases and cruzipain bands showed a TCI separation from the TCII group with 50-60% similarity. We suggest that the observed cysteine protease diversification contributes to differential host infection between TCI and II genotypes.  相似文献   

18.
Quercetin glucuronides are the main circulating metabolites of quercetin in humans. We hypothesise that the potential availability of the aglycone within tissues depends on the substrate specificity of the deconjugating enzyme beta-glucuronidase towards circulating flavonoid glucuronides. Human tissues (small intestine, liver and neutrophils) exhibited beta-glucuronidase against quercetin glucuronides. The various quercetin glucuronides were deconjugated at similar rates, but liver cell-free extracts were the most efficient and the activity was completely inhibited by saccharo-1,4-lactone (a beta-glucuronidase inhibitor). Furthermore, pure recombinant human beta-glucuronidase hydrolysed various flavonoid glucuronides, with a 20-fold variation in catalytic efficiency (k(cat)/K(m)=1.3x10(3) M(-1) s(-1) for equol-7-O-glucuronide and 26x10(3) M(-1) s(-1) for kaempferol-3-O-glucuronide). Similar catalytic efficiencies were obtained for quercetin O-glucuronides substituted at different positions. These results show that flavonoid glucuronides can be deconjugated by microsomal beta-glucuronidase from various human cells.  相似文献   

19.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed the presence of an 1,497 bp open reading frame, encoding a protein of 499 amino acids. The deduced amino acid sequence was similar to thermostable carboxypeptidase 1 from Pyrococcus furiosus, a member of peptidase family M32. Five motifs, including the HEXXH motif with two histidines coordinated with the active site metal, were conserved. The carboxypeptidase gene was cloned and overexpressed in Escherichia coli. Molecular masses assessed by SDS-PAGE and gel filtration were 61 kDa and 125 kDa respectively, which points to a dimeric structure for the recombinant enzyme, designated TNA1_CP. The enzyme showed optimum activity toward Z-Ala-Arg at pH 6.5 and 70-80 degrees C (k(cat)/K(m)=8.3 mM(-1) s(-1)). In comparison with that of P. furiosus CP (k(cat)/K(m)=667 mM(-1) s(-1)), TNA1_CP exhibited 80-fold lower catalytic efficiency. The enzyme showed broad substrate specificity with a preference for basic, aliphatic, and aromatic C-terminal amino acids. This broad specificity was confirmed by C-terminal ladder sequencing of porcine N-acetyl-renin substrate by TNA1_CP.  相似文献   

20.
Adult Schistosoma mansoni blood flukes express two discrete cysteine proteinases, SmCL1 and SmCL2, both of which are related to the cathepsin L-like enzymes of the C1 family of peptidases. Our previous phylogenetic analysis indicated that SmCL1 is more closely related to cruzipain from the parasitic protozoa Trypanosoma cruzi than to human cathepsin L, whereas the converse situation applies with SmCL2. To characterize their catalytic subsites and substrate specificities, we have now developed three-dimensional (3D) homology models of SmCL1 and SmCL2 using the structure of cruzipain and cathepsin L. Eisenberg analysis of the 3D models revealed self-compatibility scores of 90.1 and 96.1 out of a possible score of 97.6 for SmCL1 and SmCL2, respectively, verifying the accuracy and utility of the models. Substrate preferences of recombinant SmCL1 and SmCL2 at positions P3, P2, and P1 conformed to the substrate specificity predicted by the models. In particular, SmCL1 and SmCL2 both exhibited high affinity (k(cat)/K(m)) for substrates with hydrophobic residues at P2 including Z-Leu-Arg-NHMec (773.4 and 548.5 mM(-1) s(-1), respectively), Boc-Val-Leu-Lys-NHMec (116.8 and 306.5 mM(-1) s(-1)), and Z-Phe-Arg-NHMec (38.9 and 113.4 mM(-1) s(-1)). SmCL1 exhibited only a low affinity for the cathepsin B diagnostic substrate Z-Arg-Arg-NHMec while SmCL2 failed to cleave this substrate. The substrate specificities of SmCL1 and SmCL2 were clearly differentiated with H-Leu-Val-Tyr-NHMec and Suc-Leu-Tyr-NHMec since SmCL1 cleaved both efficiently (k(cat)/K(m) values of 51.9 and 41.1 mM(-1) s(-1), respectively), whereas SmCL2 cleaved neither. The 3D models revealed that this difference in specificity was due to restrictions imposed on the S3 subsite of SmCL2 as a result of insertion of two amino acids vicinal to residue 60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号