首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA content was estimated by flow cytometry in seventeen taxa from the Dilatata, Quadrifaria and Paniculata groups of Paspalum and five synthetic hybrids. Results were compared to known genome constitutions and phylogenetic relationships. DNA 2C-values ranged from 1.24 pg in diploid P. juergensii to 3.79 pg in a hexaploid biotype of P. dilatatum. The I genome of three Quadrifaria diploids is 1.2 to 1.5-fold larger than the J genome of P. juergensii (Paniculata). The 2C-values of the IIJJ tetraploids of the Dilatata group are lower than expected based on putative genome donors. Reduction of genome sizes could have occurred after the formation of the allopolyploids of the Dilatata group. The DNA content of all synthetic hybrids is in accordance with the sum of parental C-values. The interactions driving genome downsizing may operate differently during the transition from diploidy to polyploidy than on subsequent increases in ploidy level.  相似文献   

2.
The geographic position of Lebanon in the Mediterranean basin at the transition of two major landmasses, Eurasia and Africa, has contributed to its high plant diversity and makes its flora particularly interesting to study. This paper contributes to the plant DNA C-value database of native Lebanese taxa. These data should reinforce biodiversity evaluation, systematic and evolution studies involving processes of speciation such as polyploidisation. C-values have been estimated by flow cytometry using propidium iodide as intercalary fluorochrome stain. Each sample comprised at least five individuals. Where possible, several populations were measured for each species. This study presents C-values for 225 taxa belonging to 55 families and 141 genera. C-values are novel for 193 taxa including 126 plants endemic to the Eastern Mediterranean region. These are the first values for 50 genera. In this panel, genome size ranged from 1C = 0.28 pg in Hypericum thymifolium to 54.69 pg in Fritillaria alfredae. The life growth form and life cycle type are analysed according to the genome size class. Cases of polyploidy are reported for some species usually considered as only diploid. Examination of C-value variation through flow cytometry constitutes a powerful tool to screen taxonomic heterogeneity, opening further investigations.  相似文献   

3.
Nuclear DNA amounts in Macaronesian angiosperms   总被引:1,自引:0,他引:1  
Nuclear DNA contents for 104 Macaronesian angiosperms, with particular attention on Canary Islands endemics, were analysed using propidium iodide flow cytometry. Prime estimates for more than one-sixth of the whole Canarian endemic flora (including representatives of 11 endemic genera) were obtained. The resulting 1C DNA values ranged from 0.19 to 7.21 pg for Descurainia bourgeauana and Argyranthemum frutescens, respectively (about 38-fold difference). The majority of species, however, possessed (very) small genomes, with C-values <1.6 pg. The tendency towards small nuclear DNA contents and genome sizes was confirmed by comparing average values for Macaronesian and non-Macaronesian representatives of individual families, genera and major phylogenetic lineages. Our data support the hypothesis that the insular selection pressures in Macaronesia favour small C-values and genome sizes. Both positive and negative correlations between infrageneric nuclear DNA amount variation and environmental conditions on Tenerife were also found in several genera.  相似文献   

4.
The 2C DNA values in 38 species and accessions of the genus Lupinus (Fabaceae) from the New World have been analysed using flow cytometry. They are representatives of North and South American species (the Atlantic and the Andean regions). Estimated 2C DNA values ranged from 1.08 pg in L. pusillus to 2.68 pg in L. albicaulis (both from North America), that is a variation of more than 2.5-fold. The variation for North American lupins was much higher than that for South American ones. Statistical analysis of the data resulted in a grouping that showed for North American lupins some correlation with the length of life cycle. Discussion concerns some aspects of the evolution of the genus.  相似文献   

5.
Flow cytometry, using propidium iodide and 4',6-diamidano-2-phenylindole staining, was used to estimate the nuclear DNA content (2C) and the proportion of A-T base pairs in 16 species of the Mediterranean genus Cistus. Genome sizes were shown to be constant within species, since no significant intraspecific variation in 2C DNA content was detected. At the genus level, up to about 1.5-fold differences in absolute DNA amounts were observed, ranging from 3.92 pg in C. crispus to 5.88 pg in C. monspeliensis. The (AT) : (GC) ratio was close to 1, and was similar for all species examined, ranging from 47.87% A-T content in C clusii, to 50.67% in C. populifolius. Pink-flowered species (subgenus Cistus) had lower DNA amounts than white-flowered species (subgenera Leucocistus and Halimioides). However, the distribution of DNA amounts in Cistus appeared to be continuous and did not permit a clear separation of infra-generic ranks in the genus.  相似文献   

6.
The nuclear DNA content of Salmo fibreni , endemic to Lake Posta Fibreno, and of the sympatric Salmo trutta macrostigma , was evaluated using flow cytometric (FCM) analysis. The DNA content was 6-29 pg/nucleus for male and significantly greater at 6-41 pg/nucleus for female S, fibreni; and 6-37 pg/nucleus for male S, trutta macrostigma .  相似文献   

7.
BACKGROUND AND AIMS: Little information is available on DNA C-values for the New Zealand flora. Nearly 85 % of the named species of the native vascular flora are endemic, including 157 species of Poaceae, the second most species-rich plant family in New Zealand. Few C-values have been published for New Zealand native grasses, and chromosome numbers have previously been reported for fewer than half of the species. The aim of this research was to determine C-values and chromosome numbers for most of the endemic and indigenous Poaceae from New Zealand. SCOPE: To analyse DNA C-values from 155 species and chromosome numbers from 55 species of the endemic and indigenous grass flora of New Zealand. KEY RESULTS: The new C-values increase significantly the number of such measurements for Poaceae worldwide. New chromosome numbers were determined from 55 species. Variation in C-value and percentage polyploidy were analysed in relation to plant distribution. No clear relationship could be demonstrated between these variables. CONCLUSIONS: A wide range of C-values was found in the New Zealand endemic and indigenous grasses. This variation can be related to the phylogenetic position of the genera, plants in the BOP (Bambusoideae, Oryzoideae, Pooideae) clade in general having higher C-values than those in the PACC (Panicoideae, Arundinoideae, Chloridoideae + Centothecoideae) clade. Within genera, polyploids typically have smaller genome sizes (C-value divided by ploidy level) than diploids and there is commonly a progressive decrease with increasing ploidy level. The high frequency of polyploidy in the New Zealand grasses was confirmed by our additional counts, with only approximately 10 % being diploid. No clear relationship between C-value, polyploidy and rarity was evident.  相似文献   

8.
Karyotypes in 16 representative taxa of the Ophrys genus are compared, based on Feulgen-stained somatic metaphase chromosomes. The karyotypes of O. omegaifera subsp. israelitica, O. ulupinara, O. lycia, O. argolica subsp. lucis, O. argolica subsp. lesbis, O. climacis and O. reinholdii subsp. reinholdii are described for the first time. Karyological analyses indicate relationships among the species with respect to their asymmetry indices. All Ophrys taxa studied were diploid with 2n = 2x = 36 chromosomes. One B chromosome has been detected among the chromosomes of O. argolica subsp. lucis. All karyotypes are symmetrical, consisting of metacentric and submetacentric chromosomes. The longest chromosomes of all the investigated specimens contain a secondary constriction. It is determined that there is a correlation between the total number of chromosomes having secondary constrictions and the evolutionary development order of the taxa. Based on nuclear DNA content, analysis was carried out by flow cytometer using propodium iodide as fluorochrome, 2C nuclear DNA content of 16 Ophrys species varying between 20.80 pg (O. argolica subsp. lucis) and 23.11 pg (O. omegaifera subsp. israelitica). Karyotype asymmetry relationships are discussed according to the bidimensional scatter plots of A1–A2, CVCL–CVCI, CVCL–MCA and CVCI–MCA.  相似文献   

9.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

10.
Plant DNA flow cytometry and estimation of nuclear genome size   总被引:25,自引:0,他引:25  
BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.  相似文献   

11.
The Asteraceae family has been broadly studied, but the values of genome size of only 3.5% of their species are known. To expand these data, we carried out a flow cytometric study of nuclear DNA content in a wide range of taxa of this family, filling gaps in some less studied groups. In addition, some chromosome counts have been performed (46 taxa, including the first one in two species and one subspecies). We provide genome size data for 167 taxa (184 accessions). Of these, data are new for 128 species and subspecies (141 accessions), 40 genera, three tribes (Barnadesieae, Gochnatieae and Nassauvieae) and two subfamilies (Barnadesioideae and Gochnatioideae). Most values (about 75%) are small or very small (1C ≤ 3.5 pg). The second reports on 17 species previously studied with other methods (i.e. first flow cytometric assessments) are also given. Finally, we contribute results for 22 species for which a first flow cytometric assessment has been published during the preparation of this article. The current data-set moves the percentage of coverage approximately from 3% to 4.7% at the specific level, from 6% to 11.6% at the generic level, from 34.9% to 41.9% at the tribal level and from 33% to 50% at the subfamily level.  相似文献   

12.
The green macroalgal genus Ulva (incl. Entemmorpha) contains economically valuable species, is of relevance for coastal management (green tides), and certain taxa serve as experimental organisms for fundamental research in green algae. The nuclear genome size of Ulva (Entemmorpha) compressa Linnaeus was measured in propidium iodide stained nuclei using laser scanning cytometry. Nuclei of fixed gametes yielded reproducible values, whereas nuclei extracted from multicellular gametophytes were unsuitable. With nuclei of Arabidopsis thaliana (L.) Heynh and Saccharomyces cerevisiae Hansen as references, the haploid nuclear genome size of U. compressa was calculated as 135 ± 7 Mbp. This is the smallest genome so far known from any species of Ulva.  相似文献   

13.
Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious.  相似文献   

14.
Nuclear DNA amount of five species ofCelosia ranging from 2x to 12x varies from 3.26 (2x) to 9.70pg (12x). The diploidC. trigyna has twice as much DNA/basic genome as other taxa, which is commensurate with its taxonomic position and genetic isolation. There is insignificant variation in DNA/basic genome among 4x, 8x, and 12x taxa. Therefore, DNA/nucleus shows a strong positive correlation with ploidy level. The different accessions of 4x taxa show constancy of DNA amounts. There is no correlation of seed weight with DNA amount.  相似文献   

15.
Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. In the present study, the genome size of 61 accessions corresponding to 11 genera and 50 species of Vitaceae and Leeaceae is determined using flow cytometry. Phylogenetically based statistical analyses were used to infer ancestral character reconstructions of nuclear DNA contents. The DNA 1C‐values of 38 species are reported for the first time, with the largest genome (Cyphostemma humile (N. E. Br.) Desc. ex Wild & R. B. Drumm, 1C = 3.25 pg) roughly 10.48‐fold larger than the smallest (Vitis vulpina L., 1C = 0.31 pg). The large genomes are restricted to the tribe Cayratieae, and most other extant species in the family possess relatively small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor for the family had a relatively small genome (1C = 0.85 pg). Genome evolution in Vitaceae has been characterized by a trend towards genome size reduction, with just one episode of apparent DNA accumulation in the Cayratieae lineage. Such contrasting patterns of genome size evolution probably resulted from transposable elements and chromosome rearrangements, while neopolyploidization seems to contribute to recent genome increase in some species at the tips in the family tree.  相似文献   

16.
Background and Aims: Plant evolution is well known to be frequently associated withremarkable changes in genome size and composition; however,the knowledge of long-term evolutionary dynamics of these processesstill remains very limited. Here a study is made of the finedynamics of quantitative genome evolution in Festuca (fescue),the largest genus in Poaceae (grasses). Methods: Using flow cytometry (PI, DAPI), measurements were made of DNAcontent (2C-value), monoploid genome size (Cx-value), averagechromosome size (C/n-value) and cytosine + guanine (GC) contentof 101 Festuca taxa and 14 of their close relatives. The resultswere compared with the existing phylogeny based on ITS and trnL-Fsequences. Key Results: The divergence of the fescue lineage from related Poeae waspredated by about a 2-fold monoploid genome and chromosome sizeenlargement, and apparent GC content enrichment. The backwardreduction of these parameters, running parallel in both mainevolutionary lineages of fine-leaved and broad-leaved fescues,appears to diverge among the existing species groups. The mostdramatic reductions are associated with the most recently andrapidly evolving groups which, in combination with recent intraspecificgenome size variability, indicate that the reduction processis probably ongoing and evolutionarily young. This dynamicsmay be a consequence of GC-rich retrotransposon proliferationand removal. Polyploids derived from parents with a large genomesize and high GC content (mostly allopolyploids) had smallerCx- and C/n-values and only slightly deviated from parentalGC content, whereas polyploids derived from parents with smallgenome and low GC content (mostly autopolyploids) generallyhad a markedly increased GC content and slightly higher Cx-and C/n-values. Conclusions: The present study indicates the high potential of general quantitativecharacters of the genome for understanding the long-term processesof genome evolution, testing evolutionary hypotheses and theirusefulness for large-scale genomic projects. Taken together,the results suggest that there is an evolutionary advantagefor small genomes in Festuca.  相似文献   

17.
Estimation of nuclear DNA content of plants by flow cytometry   总被引:24,自引:0,他引:24  
A rapid and simple protocol for estimation of nuclear DNA content of plants is described. Suspensions of intact nuclei are prepared either by chopping plant tissues or lysing protoplasts in a MgSO4 buffer, mixed with DNA standards, and stained with propidium iodide in a solution containing DNAase-free RNAase. Fluorescence intensities of the stained nuclei are measured by a flow cytometer. Values for nuclear DNA content are estimated by comparing fluorescence intensities of the nuclei of the test population with those of appropriate internal DNA standards. The same procedure can also be used for rapid determination of ploidy in plant tissues.  相似文献   

18.
Smarda P  Bures P 《Annals of botany》2006,98(3):665-678
BACKGROUND AND AIMS: Intraspecific genome size variability of Festuca pallens occurring on relict rocky steppes in Central Europe was studied on two ploidy levels and three geographical scales: (1) local scale of 24 populations, (2) landscape scale of three transects in river canyons or hill systems, and (3) global scale of 160 samples covering the whole distribution area. METHODS: DAPI flow cytometry of homogeneously cultivated samples (>or=1 year), measured randomly with two internal standards, Lycopersicon esculentum and Pisum sativum. Differences in DNA content were confirmed (1) by the double peaks of simultaneously measured samples, (2) based on measurements carried out in different seasons, and (3) by additional measurements with propidium iodide. KEY RESULTS: On a global scale, the relative DNA content ranged between 1.170-fold in diploids and 1.164-fold in tetraploids. A maximum difference of 1.088-fold between the mean relative DNA content of nearby populations was found. In 16 of 24 populations significant variability was shown (P<0.001, 1.121-fold as maximum). For both ploidy levels, the relative genome size had the same range and geographical pattern, correlated with geographical coordinates (P<0.01). Diploids with larger genomes occur on relict habitats (P<0.01), and in areas of periglacial steppes (20,000 years ago; P<0.02). In tetraploids, the relative DNA content differs among the three previously recognized geographical types (Alpine, Pannonian and Scabrifolia, P<0.001). Tetraploids have a relative DNA content smaller than twice that of the diploids (P<0.001). An influence of microhabitat on DNA content variation was not confirmed. CONCLUSIONS: Genome size variability occurs over all spatial scales: intrapopulation, landscape and global. Correlation between geographical coordinates and palaeovegetation type, concomitant with diploids and tetraploids, and no influence of microhabitat were found. Genome size decreases in tetraploids. Lower CVs, and thus higher accuracy, resolution and reproducibility, favour DAPI measurements for the study of intraspecific genome size variability.  相似文献   

19.
The Quercus species serve as a powerful model for studying introgression in relation to species boundaries and adaptive processes. Coexistence of distant relatives, or lack of coexistence of closely relative oak species, introgression may play a role. In the current study, four closely related oak species were found in Zijinshan, China. We generated a comprehensive genome size (GS) database for 120 individuals of four species using flow cytometry‐based approaches. We examined GS variability within and among the species and hybridization events among the four species. The mean GSs of Q. acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata were estimated to be 1.87, 1.92, 1.97, and 1.97 pg, respectively. The intraspecific and interspecific variations of GS observed among the four oak species indicated adaptation to the environment. Hybridization occurred both within and between the sections. A hybrid offspring was produced from Q. fabri and Q. variabilis, which belonged to different sections. The GS evolutionary pattern for hybrid species was expansion. Hybridization between the sections may be affected by habitat disturbance. This study increases our understanding of the evolution of GS in Quercus and will help establish guidelines for the ecological protection of oak trees.  相似文献   

20.
Flow cytometric estimation of nuclear DNA content was performed in six plant species employing three fluorochromes showing different DNA base preferences: propidium iodide (no base preference), 4',6-diamidino-2-phenylindole (DAPI; AT preference), and mithramycin (GC preference). Nuclei isolated from human leukocytes were used as a primary reference standard. While nuclear DNA contents estimated using propidium iodide were in agreement with published data obtained using other techniques, the values obtained using fluorochromes showing base preference were significantly different. It was found that the differences were caused by the differences in overall AT/GC ratios, and by the species-specific differences in binding of these fluorochromes to DNA. It was concluded that nuclear DNA content estimations performed with fluorochromes showing base preference should be interpreted with caution even when AT/GC ratios of the reference and the sample are equal. The use of intercalting dyes (e.g. propidium iodide) is recommended for this purpose. On the other hand, comparison of the staining behaviour of intercalating dyes with that of dyes showing base preference may give additional information on chromatin structural differences and arrangement of molecule pairs in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号