首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.  相似文献   

2.
Peroxisome proliferator-activated receptors (PPARs) are a subgroup of the superfamily of nuclear receptors, with three distinct main types: alpha, beta and gamma (subdivided into gamma(1) and gamma(2)). Recently, the presence of PPARgamma has been reported in human islets. Whether other PPAR types can be found in human islets, how islet PPARgamma mRNA expression is regulated by the metabolic milieu, their role in insulin secretion, and the effects of a PPARgamma agonist are not known. In this study, human pancreatic islets were prepared by collagenase digestion and density gradient purification from nonobese adult donors. The presence of PPAR mRNAs was assessed by RT-PCR, and the effect was evaluated of exposure for up to 24 h to either 22.2 mmol/l glucose and/or 0.25, 0.5, or 1.0 mmol/l long-chain fatty acid mixture (oleate to palmitate, 2:1). PPARbeta and, to a greater extent, total PPARgamma and PPARgamma(2) mRNAs were expressed in human islets, whereas PPARalpha mRNA was not detected. Compared with human adipose tissue, PPARgamma mRNA was expressed at lower levels in the islets, and PPARbeta at similar levels. The expression of PPARgamma(2) mRNA was not affected by exposure to 22.2 mmol/l glucose, whereas it decreased markedly and time-dependently after exposure to progressively higher free fatty acids (FFA). This latter effect was not affected by the concomitant presence of high glucose. Exposure to FFA caused inhibition of insulin mRNA expression, glucose-stimulated insulin release, and reduction of islet insulin content. The PPARgamma agonists rosiglitazone and 15-deoxy-Delta-(12,14)prostaglandin J(2) prevented the cytostatic effect of FFA as well as the FFA-induced changes of PPAR and insulin mRNA expression. In conclusion, this study shows that PPARgamma mRNA is expressed in human pancreatic islets, with predominance of PPARgamma(2); exposure to FFA downregulates PPARgamma(2) and insulin mRNA expression and inhibits glucose-stimulated insulin secretion; exposure to PPARgamma agonists can prevent these effects.  相似文献   

3.
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes.  相似文献   

4.
Enhancement of beta-cell sensitivity to glucose by oral fat load.   总被引:1,自引:0,他引:1  
Recent studies have demonstrated that 6 h infusions of lipid emulsion enhance insulin release, whereas 24 h infusions inhibit insulin secretion. How insulin release is modulated after oral fat loading has not yet been elucidated. 17 healthy fasting volunteers were subjected to 3 experiments in random order: test 1 was a frequently sampled i. v. glucose tolerance test (FSIVGTT, 0.3 g/kg glucose), test 2 began with the ingestion of 50 % sunflower oil (1.5 g/kg) followed by FSIVGTT 4 h later. Test 3 was identical to test 2 with i. v. addition of 100 U/kg heparin prior to FSIVGTT. Glucose and insulin data were analyzed by minimal model assumptions - glucose sensitivity of the beta-cells (Theta1), acute insulin response (AIR) (10 min), 3 h insulin release (Theta2), glucose threshold of insulin secretion (h), insulin degradation rate (n), peripheral insulin sensitivity (S(I)), and glucose-dependent glucose disposal (S(G)). After drinking the fat emulsion, FFAs increased to 0.8 +/- 0.3 mmol/l (test 2) and to 3.0 +/- 0.3 mmol/l (test 3). Moderately increased FFA concentrations were associated with elevation of Theta1 (test 1, control 335 +/- 157 vs. test 2: 859 +/- 612 pM x min x mM(-1), p = 0.030). At high plasma FFA levels and in the presence of heparin (test 3), Theta1 was reduced compared to test 2 and unchanged compared to test 1. Theta2 and h were elevated in both tests 2 and 3 compared to test 1. No changes of n, S(I) and S(G) were found. In conclusion, the ingestion of sunflower oil triglyceride emulsion resulted in a 60 % increase in plasma free fatty acids and enhanced the capacity of beta-cells to secrete insulin. Heparin-induced high levels of FFA further augmented the total insulin release and inhibited parameters of glucose responsiveness.  相似文献   

5.
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.  相似文献   

6.
Previous work has demonstrated that the peptide hormone ghrelin raises blood glucose. Such has been attributed to ghrelin's ability to enhance GH secretion, restrict insulin release, and/or reduce insulin sensitivity. Ghrelin's reported effects on glucagon have been inconsistent. Here, both animal- and cell-based systems were used to determine the role of glucagon in mediating ghrelin's effects on blood glucose. The tissue and cell distribution of ghrelin receptors (GHSR) was evaluated by quantitative PCR and histochemistry. Plasma glucagon levels were determined following acute acyl-ghrelin injections and in pharmacological and/or transgenic mouse models of ghrelin overexpression and GHSR deletion. Isolated mouse islets and the α-cell lines αTC1 and InR1G9 were used to evaluate ghrelin's effects on glucagon secretion and the role of calcium and ERK in this activity. GHSR mRNA was abundantly expressed in mouse islets and colocalized with glucagon in α-cells. Elevation of acyl-ghrelin acutely (after sc administration, such that physiologically relevant plasma ghrelin levels were achieved) and chronically (by slow-releasing osmotic pumps and as observed in transgenic mice harboring ghrelinomas) led to higher plasma glucagon and increased blood glucose. Conversely, genetic GHSR deletion was associated with lower plasma glucagon and reduced fasting blood glucose. Acyl-ghrelin increased glucagon secretion in a dose-dependent manner from mouse islets and α-cell lines, in a manner requiring elevation of intracellular calcium and phosphorylation of ERK. Our study shows that ghrelin's regulation of blood glucose involves direct stimulation of glucagon secretion from α-cells and introduces the ghrelin-glucagon axis as an important mechanism controlling glycemia under fasting conditions.  相似文献   

7.
Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.  相似文献   

8.
The control of insulin and glucagon secretion from isolated pancreatic islets of lean and genetically obese mice has been compared. The enlarged islets of obese mouse pancreas and islets of obese mouse pancreas and islets of obese mice maintained on a restricted diet manifested a greater response to glucose stimulation of insulin secretion than the lean mice islets. The glucagon content of the islets, the secretion of glucagon in a medium containing 150 mg% glucose and the stimulation of glucagon secretion by arginine did not differ significantly in the two groups. Adrenaline stimulated glucagon secretion in vitro from obese mice but not from lean mice. Antinsulin serum injections into obese mice increased the plasma glucagon levels about twofold and had no effect on glucagon levels in lean mice, although the level of hyperglycaemia was the same in both groups. It is suggested that the suppression of glucagon release by glucose requires a higher concentration of insulin in the obese mouse pancreas than in lean mice.  相似文献   

9.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   

10.
The FRK tyrosine kinase has previously been shown to transduce beta-cell cytotoxic signals in response to cytokines and streptozotocin and to promote beta-cell proliferation and an increased beta-cell mass. We therefore aimed to further evaluate the effects of overexpression of FRK tyrosine kinase in beta-cells. A transgenic mouse expressing kinase-active FRK under control of the insulin promoter (RIP-FRK) was studied with regard to islet endocrine function and vascular morphology. Mild glucose intolerance develops in RIP-FRK male mice of at least 4 mo of age. This effect is accompanied by reduced glucose-stimulated insulin secretion in vivo and reduced second-phase insulin secretion in response to glucose and arginine upon pancreas perfusion. Islets isolated from the FRK transgenic mice display a glucose-induced insulin secretory response in vitro similar to that of control islets. However, islet blood flow per islet volume is decreased in the FRK transgenic mice. These mice also exhibit a reduced islet capillary lumen diameter as shown by electron microscopy. Total body weight and pancreas weight are not significantly affected, but the beta-cell mass is increased. The data suggest that long-term expression of active FRK in beta-cells causes an in vivo insulin-secretory defect, which may be the consequence of islet vascular abnormalities that yield a decreased islet blood flow.  相似文献   

11.
An insulin response to increased glucose concentrations could not be found in vivo and in vitro after long-term treatment of C57BL/KsJ and C57BL/6J mice with Glibenclamide. This missing stimulation of insulin secretion was not the result of an exhaustion of the islets or a disturbed (pro)insulin biosynthesis as demonstrated by measurements of insulin content of the islets and by in vitro (pro)insulin biosynthesis experiments. In the presence of glucose (15 mmol/l) theophylline increased the insulin secretion of isolated islets of Glibenclamide-treated mice to values similar to control islets. The insulin response to an i.p. glucose loading was found to be normal in comparison with control mice 1-2 weeks after the Glibenclamide treatment had been finished.  相似文献   

12.
We investigated the mechanisms that lead to combined hyperlipidemia in transgenic mice that overexpress human apolipoprotein (apo) A-II (line 11.1). The 11.1 transgenic mice develop pronounced hypertriglyceridemia, and a moderate increase in free fatty acid (FFA) and plasma cholesterol, especially when fed a high-fat/high-cholesterol diet. Post-heparin plasma lipoprotein lipase and hepatic lipase activities (using artificial or natural autologous substrates), the decay of plasma triglycerides with fasting, and the fractional catabolic rate of the radiolabeled VLDL-triglyceride (both fasting and postprandial) were similar in 11. 1 transgenic mice and in control mice. In contrast, a 2.5-fold increase in hepatic VLDL-triglyceride production was observed in 11. 1 transgenic mice in a period of 2 h in which blood lipolysis was inhibited. This increased synthesis of hepatic VLDL-triglyceride used preformed FFA rather than FFA of de novo hepatic synthesis. The 11.1 transgenic mice also presented reduced epididymal/parametrial white adipose tissue weight (1.5-fold), increased rate of epididymal/parametrial hormone-sensitive lipase-mediated lipolysis (1.2-fold) and an increase in cholesterol and, especially, in triglyceride liver content, suggesting an enhanced mobilization of fat as the source of preformed FFA reaching the liver. Increased plasma FFA was reverted by insulin, demonstrating that 11.1 transgenic mice are not insulin resistant. We conclude that the overexpression of human apoA-II in transgenic mice induces combined hyperlipidemia through an increase in VLDL production. These mice will be useful in the study of molecular mechanisms that regulate the overproduction of VLDL, a situation of major pathophysiological interest since it is the basic mechanism underlying familial combined hyperlipidemia.  相似文献   

13.
Neonatal STZ (nSTZ) treatment results in damage of pancreatic B-cells and in parallel depletion of insulin and TRH in the rat pancreas. The injury of B-cells is followed by spontaneous regeneration but dysregulation of the insulin response to glucose persists for the rest of life. Similar disturbance in insulin secretion was observed in mice with targeted TRH gene disruption. The aim of present study was to determine the role of the absence of pancreatic TRH during the perinatal period in the nSTZ model of impaired insulin secretion. Neonatal rats were injected with STZ (90 microg/g BW i.p.) and the effect of exogenous TRH (10 ng/g BW/day s.c. during the first week of life) on in vitro functions of pancreatic islets was studied at the age 12-14 weeks. RT-PCR was used for determination of prepro-TRH mRNA in isolated islets. Plasma was assayed for glucose and insulin, and isolated islets were used for determination of insulin release in vitro. The expression of prepro-TRH mRNA was only partially reduced in the islets of adult nSTZ rats when compared to controls. nSTZ rats had normal levels of plasma glucose and insulin but the islets of nSTZ rats failed to response by increased insulin secretion to stimulation with 16.7 mmol/l glucose or 50 mmol/l KCl. Perinatal TRH treatment enhanced basal insulin secretion in vitro in nSTZ animals of both sexes and partially restored the insulin response to glucose stimulation in nSTZ females.  相似文献   

14.
The scarcity of available islets is an obstacle for clinically successful islet transplantation. One solution might be to increase the efficacy of the limited islets. Isolated islets are exposed to a variety of cellular stressors, and disruption of the cell-matrix connections damages islets. We examined the effect of fibronectin, a major component of the extracellular matrix, on islet viability, mass and function, and also examined whether fibronectin-treated islets improved the results of islet transplantation. Islets cultured with fibronectin for 48 hours maintained higher cell viability (0.146 +/- 0.010 vs. 0.173 +/- 0.007 by MTT assay), and also had a greater insulin and DNA content (86.8 +/- 3.6 vs. 72.8 +/- 3.2 ng/islet and 35.2 +/- 1.4 vs. 30.0 +/- 1.5 ng/islet, respectively) than islets cultured without fibronectin (control). Absolute values of insulin secretion were higher in fibronectin-treated islets than in controls; however, the ratio of stimulated insulin secretion to basal secretion was not significantly different (206.9 +/- 23.3 vs. 191.7 +/- 20.2% when the insulin response to 16.7 mmol/l glucose was compared to that of 3.3 mmol/l glucose); the higher insulin secretion was thus mainly due to larger islet cell mass. The rats transplanted with fibronectin-treated islets had lower plasma glucose and higher plasma insulin levels within 2 weeks after transplantation, and had more favorable glucose tolerance 9 weeks after transplantation. These results indicate that cultivation with fibronectin might preserve islet cell viability, mass and insulin secretory function, which could improve glucose tolerance following islet transplantation.  相似文献   

15.
Previous studies have reported both positive and negative effects of culture of islets at high glucose concentrations on regulated insulin secretion. Here, we have reexamined this question in mouse islets and determined the role of changes in lipid synthesis in the effects of glucose. Glucose-stimulated insulin secretion (GSIS) and gene expression were examined in islets from C57BL/6 mice or littermates deleted for sterol-regulatory element binding protein-1 (SREBP1) after 4 days of culture at high glucose concentrations. Culture of control islets at 30 versus 8 mmol/l glucose led to enhanced secretion at both basal (3 mmol/l) and stimulatory (17 mmol/l) glucose concentrations and to enhanced triacylglycerol accumulation. These changes were associated with increases in the expression of genes involved in glucose sensing (glucose transporter 2, glucokinase, sulfonylurea receptor 1, inwardly rectifying K(+) channel 6.2), differentiation (pancreatic duodenal homeobox 1), and lipogenesis (Srebp1, fatty acid synthase, acetyl-coenzyme A carboxylase 1, stearoyl-coenzyme A desaturase 1). When cultured at either 8 or 30 mmol/l glucose, SREBP1-deficient (SREBP1(-/-)) islets displayed reduced GSIS and triacylglycerol content compared with normal islets. Correspondingly, glucose induction of the above genes in control islets was no longer observed in SREBP1(-/-) mouse islets. We conclude that enhanced lipid synthesis mediated by SREBP1c-dependent genes is required for the adaptive changes in islet gene expression and insulin secretion at high glucose concentrations.  相似文献   

16.
Mice were subjected to gastrectomy (GX) or sham operation (controls). Four to six weeks later the pancreatic islets were isolated and analysed for cAMP or alternatively incubated in a Krebs-Ringer based medium in an effort to study insulin secretion and cAMP accumulation in response to glucose or the adenylate cyclase activator forskolin. Freshly isolated islets from GX mice had higher cAMP content than islets from control mice, a difference that persisted after incubation for 1 h at a glucose concentration of 4 mmol/l. Addition of forskolin to this medium induced much greater cAMP and insulin responses in islets from GX mice than in islets from control mice. In contrast, the insulin response to high glucose (16.7 mmol/l) was much weaker in GX islets than in control islets. Glucose-induced insulin release was associated with a 2-fold rise in the cAMP content in control islets. Surprisingly no rise in cAMP was noted in GX islets incubated at high glucose. Capacitance measurements conducted on isolated insulin cells from GX mice revealed a much lower exocytotic response to a single 500 ms depolarisation (from -70 mV to zero) than in control insulin cells. Addition of cAMP to the cytosol enhanced the exocytotic response in insulin cells from control mice but not from GX mice. The depolarisation-triggered inward Ca(2+) current in insulin cells from GX mice did not differ from that in control mice, and hence the reduced exocytotic response following GX cannot be ascribed to a decreased Ca(2+) influx. Experiments involving a train of ten 500 ms depolarisations revealed that the exocytotic response was prominent in control insulin cells but modest in GX insulin cells. It seems that cAMP is capable of eliciting insulin release from insulin cells of GX mice only when cAMP is generated in a specific microdomain conceivably through the intervention of membrane-associated adenylate cyclases that can be activated by forskolin. The GX-evoked impairment of depolarisation-induced exocytosis and glucose-stimulated insulin release may reflect the lack of a gastric agent that serves to maintain an appropriate insulin response to glucose and an appropriate exocytotic response to depolarisation by raising cAMP in a special glucose-sensitive compartment possibly regulated by a soluble adenylate cyclase.  相似文献   

17.
The pathophysiology of TallyHo mouse, a recently established animal model for type 2 diabetes mellitus, was analyzed at prediabetic state to examine the inherent defects which contribute to the development of diabetes. At 4 weeks of age, the TallyHo mice already revealed glucose intolerance while their peripheral tissues exhibited normal insulin sensitivity. On the other hand, decreased plasma insulin concentration was observed with little differences in pancreatic insulin contents, indicating the impaired insulin secretion. Such defect, however, was not found in the isolated islets, which suggests a role of endocrine factor in impaired insulin secretion of TallyHo mice. Treatment of leptin inhibited the glucose-stimulated insulin secretion from the isolated islets of TallyHo mice, while in vivo administration of anti-leptin antibody lowered plasma glucose concentration with increased insulin level in TallyHo mice. Expression of glucokinase mRNA was decreased both in whole pancreas and leptin treated islets of TallyHo mice compared with whole pancreas in C57BL/6 mice and untreated islets of TallyHo mice, respectively. These results suggest that elevated plasma leptin can, through the inhibition of insulin secretion, induce glucose intolerance in TallyHo mice.  相似文献   

18.
To study effects of Bcl-x(L) in the pancreatic beta-cell, two transgenic lines were produced using different forms of the rat insulin promoter. Bcl-x(L) expression in beta-cells was increased 2- to 3-fold in founder (Fd) 1 and over 10-fold in Fd 2 compared with littermate controls. After exposure to thapsigargin (10 microM for 48 h), losses of cell viability in islets of Fd 1 and Fd 2 Bcl-x(L) transgenic mice were significantly lower than in islets of wild-type mice. Unexpectedly, severe glucose intolerance was observed in Fd 2 but not Fd 1 Bcl-x(L) mice. Pancreatic insulin content and islet morphology were not different from control in either transgenic line. However, Fd 2 Bcl-x(L) islets had impaired insulin secretory and intracellular free Ca(2+) ([Ca(2+)](i)) responses to glucose and KCl. Furthermore, insulin and [Ca(2+)](i) responses to pyruvate methyl ester (PME) were similarly reduced as glucose in Fd 2 Bcl-x(L) islets. Consistent with a mitochondrial defect, glucose oxidation, but not glycolysis, was significantly lower in Fd 2 Bcl-x(L) islets than in wild-type islets. Glucose-, PME-, and alpha-ketoisocaproate-induced hyperpolarization of mitochondrial membrane potential, NAD(P)H, and ATP production were also significantly reduced in Fd 2 Bcl-x(L) islets. Thus, although Bcl-x(L) promotes beta-cell survival, high levels of expression of Bcl-x(L) result in reduced glucose-induced insulin secretion and hyperglycemia due to a defect in mitochondrial nutrient metabolism and signaling for insulin secretion.  相似文献   

19.
A role for glucagon-like peptide 1 (GLP-1) has been suggested in stimulating beta-cell lipolysis via elevation of cAMP and activation of protein kinase A, which in turn may activate hormone-sensitive lipase (HSL), thereby contributing to fatty acid generation (FFA) from intracellular triglyceride stores. FFAs may then be metabolized to a lipid signal, which is required for optimal glucose-stimulated insulin secretion. Since HSL is expressed in islet beta-cells, this effect could contribute to the stimulation of insulin secretion by GLP-1, provided that a lipid signal of importance for insulin secretion is generated. To examine this hypothesis, we have studied the acute effect of GLP-1 on isolated mouse islets from normal mice and from mice with high-fat diet induced insulin resistance. We found, however, that although GLP-1 (100 nM) markedly potentiated glucose-stimulated insulin secretion from islets of both feeding groups, the peptide was not able to stimulate islet palmitate oxidation or increase lipolysis measured as glycerol release. This indicates that a lipid signal does not contribute to the acute stimulation of insulin secretion by GLP-1. To test whether lipolysis might be involved in the islet effects of long-term GLP-1 action, mice from the two feeding groups were chronically treated with exendin-4, a peptide that lowers blood glucose by interacting with GLP-1 receptors, in order to stimulate insulin secretion, for 16 days before isolation of the islets. The insulinotropic effects of GLP-1 and forskolin were exaggerated in isolated islets from exendin-4 treated mice given a high-fat diet, with a augmented palmitate oxidation as well as islet lipolysis at high glucose levels in these islets. Exendin-4 treatment had less impact on mice fed a normal diet. From these results we conclude that while GLP-1 does not seem to induce beta-cell lipolysis acutely in mouse islets, the peptide affects beta-cell fat metabolism after long-term adaptation to GLP-1 receptor stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号