共查询到20条相似文献,搜索用时 0 毫秒
1.
Bushra Khan Habib Ullah Muhammad Aamir Anwarzeb Khan Wajid Khan 《Soil & Sediment Contamination》2016,25(8):891-904
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river. 相似文献
2.
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil/water systems, but the mechanisms are unclear. The model of “soft” and “hard” carbon domains has been extensively cited in the sorption literature to account for nonlinear sorption behaviors, but the structural compositions of soil organic matter (SOM) are not well understood. The objective of this study was to examine the characteristics of SOM and the effect of SOM heterogeneity on sorption isotherm by elemental analysis, organic petrographic examination, scanning electron microscopy, 13C nuclear magnetic resonance and studying the sorption behaviors of phenanthrene, naphthalene, 1,3,5-trichlorobenzene and o-xylene in soil and its isolated fractions, humic acid (HA) and humin (denser particulates and lighter particulates). DP mainly contained low maturation and high paraffinic carbon huminite. LP was composed of inertinite, huminite, vitrinite and exinite, with smaller particle size and higher maturation than DP. Humic acid approached the lignite coal rank.
All isotherms were nonlinear, and nonlinearity increased in the following order: HA > DP > soil > BE > LP. The sorption of HOCs in soil was primarily regulated by SOM. Humic acid seemed to be the soft carbon domain and insoluble condensed organic matter (humin) the hard carbon domain. Isotherm nonlinearity was negatively correlated with hydrophobicity and molecular size, while sorption capacity increased with increase of these parameters. Aliphatic structures of SOM, as observed for LP, could also contribute to both isotherm nonlinearity and large sorption capacity. 相似文献
3.
Field and laboratory research has repeatedly shown that free-living soil nematodes differ in their sensitivity to soil pollution. In this paper, we analyze whether nematode genera proved sensitive or tolerant toward heavy metals and organic pollutants in six long-term field experiments. We discuss overlaps between nematode physiological responses to heavy metals and to organic pollutants, which may explain why nematodes can exhibit co-tolerance toward several contaminants. We propose a simple method for separating direct effects of soil contamination on nematode populations from indirect effects mediated through the food chain. Finally, we analyze the extent to which nematodes exhibited consistent responses across the experiments analyzed. Our results show that (a) indirect effects of pollution were generally strong; (b) fewer nematode genera were tolerant than sensitive; (c) many genera, including practically all Adenophorea, exhibited a common response pattern to contaminants; and (d) several genera of the Secernentea exhibited differential tolerance toward particular pollutants. We conclude that bioindication of soil contamination should preferentially be based on tolerant, and less on sensitive, nematodes. We provide a list of nematode genera that may potentially serve as differential bioindicators for specific soil contaminants. 相似文献
4.
Jinghuan Zhang 《Soil & Sediment Contamination》2016,25(2):210-222
Sorption and desorption of 1, 2, 3-trichlorobenzene (TCB) and 1,2,4,5-tetrachlorobenzene (TeCB) onto wood char prepared from maple wood shavings heated at 500°C were studied in the presence of dissolved organic matter (DOM), including humic acid (HA), L-malic acid (L-MA), and peptone. Compared to TCB, TeCB exhibited more nonlinear and stronger sorption onto wood char. Nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of HA enhanced the sorption capacity and desorption hysteresis of TCB and TeCB on wood char mainly due to the strong sorption of HA on wood char surface. Moreover, there were positive relations between Kd values of TCB and TeCB and the HA concentration (p < 0.01). In contrast, peptone reduced the sorption capacity and increased the sorption reversibility because of the partition of TCB and TeCB in peptone solution. L-MA at 50-200 mg·L?1 also leads to a decrease in sorption capacity and irreversibility attributed to solubilization, although the sorbed L-MA on the wood char surface can slightly increase TCB and TeCB sorption. At the same concentration, peptone leads to a higher decrease in TCB sorption than L-MA. Also, negative correlations were found between Kd values of TCB and TeCB and the L-MA and peptone concentration (p < 0.01). Our results may help to understand the different impacts of DOM on the transport and fate of halogenated aromatic hydrocarbons in aquatic environments polluted with chars. 相似文献
5.
Bahi Jalili Seh-Bardan Radziah Othman Samsuri Ab Wahid Aminudin Husin Fardin Sadegh-Zadeh 《Bioremediation Journal》2012,16(2):57-65
The bioleaching experiment was conducted for the removal of heavy metals from mine tailings. A fungal strain was isolated from the gold mine tailings and it has been identified as Aspergillus fumigatus based on its 18S rDNA analysis. Bioleaching using A. fumigatus was carried out in bioleaching step processes (one-step and two-step) at various tailings concentrations (1%, 2%, 4%, and 8% [w/v]). In the one-step bioleaching process where fungi were cultivated in the presence of the tailings, concentration of oxalic acid was the highest among the organic acids produced. On the other hand, in the two-step bioleaching process where the metabolic products of fungal growth, which have been separated from its biomass, were used, citric acid was dominant. In the one-step process, the highest As (62%), Fe (58%), Mn (100%), and Zn (54%) removals were observed at the lowest tailings concentration (1%). The removal of Pb at 1% tailings concentration in the one-step process was 56%, whereas 88% removal was achieved in the two-step process where citric acid was dominant. In general, heavy metals removal efficiency decreased with increased tailings of the concentration in both bioleaching processes. This study shows the possibility of using A. fumigatus to bioleach hazardous heavy meals from gold mine tailings. 相似文献
6.
Concentration,Distribution, Source,and Risk Assessment of PAHs and Heavy Metals in Surface Water from the Three Gorges Reservoir,China 总被引:1,自引:0,他引:1
Fifteen polycyclic aromatic hydrocarbons (PAHs) and heavy metals (Cr, Ni, As, Cd, Pb, and Hg) were quantified in 19 surface water sites of the Three Gorges Reservoir, China. The total concentrations of 15 PAHs and six heavy metals in the 19 sample sites ranged from 130.8 ng L?1 to 227.5 ng L?1 and 3.2 μg L?1 to 6.0 μg L?1, respectively. The mean concentration of As was the highest among the six heavy metals (2.1 ± 0.3 μg L?1), followed by Cr (0.5 ± 0.3 μg L?1), Ni (1.3 ± 0.1 μg L?1), Cd (0.2 ± 0.01 μg L?1), Pb (0.07 ± 0.08 μ g L?1) and Hg (0.05 ± 0.08 μg L?1). The isomer ratio results suggest that PAHs at most sites were mainly from petroleum combustion, while coal and biomass combustion was the main source at sites 1, 2, 6, 7, 9, 14, and 17. Based on principal component analysis, the main source of heavy metals was anthropogenic activities and weathering of bedrocks. Depending on characteristic of RQ(NCs) ≥ 1 and RQ(MPCs) < 1, BaA showed higher potential ecological risk than other PAHs, therefore, all sampling site needed to be paid much more attention, included some remedial actions. Meanwhile, after assessing human health risk of heavy metal, it was unlikely to experience adverse health effects, even exposing through more pathways and six kinds of heavy metals simultaneously. 相似文献
7.
Aziza Kouchou Naoual Rais Jeanne-Chantal Thoisy Joëlle Duplay Malika Ghazi Françoise Elsass 《Soil & Sediment Contamination》2017,26(3):259-276
To investigate the relevance of biochemical parameters in biogeochemical mechanisms of the soil, it is important to gather data related to different soil types under different pedogeoclimatic conditions. In this study, we investigated on the calcareous agricultural soils in the Saiss plain (North Morocco). Four agricultural soils exposed to multi-metal (Cr, Cu, Zn, and Ni) and organic matter (OM) contamination as a result of irrigation with Oued Fez and Oued Sebou waters that are affected by urban and industrial activities around the city of Fez were studied and compared to a reference site irrigated with uncontaminated water. The study concerned soil physicochemical properties and the activity of a range of enzymes [phosphatase (PHOS), arylsulfatase (SULF), urease (UREA), arylamidase (AMID), β-galactosidase (GALA), glucosidase (GLUC), and laccase (LACA)] related to nutrients cycles. Pearson's correlations between these parameters showed that soil enzymatic activities (PHOS, SULF, UREA, GALA, GLUC, and LACA) were correlated positively with heavy metals (Cu, Zn, and Cr) concentrations in the soil and also with dissolved organic carbon (DOC), and negatively with the aromaticity (AROM) of these compounds. Interestingly, analysis of intra-site correlations showed strong relationships among enzyme activities in the reference soil, while in contaminated soils, these activities were largely unrelated to each other. It was concluded that soil irrigation with heavy-metal- and OM-contaminated watercourses over decades has resulted in soils with high enzymatic activities function and nutrient turnover but altered relationships among geochemical cycles. 相似文献
8.
James A. Saunders Ming-Kuo Lee Lorraine W. Wolf Cynthia M. Morton Yucheng Feng Ivy Thomson Stephanie Park 《Bioremediation Journal》2005,9(1):33-48
Bioremediation methods that precipitate contaminants in situ as solid (mineral) phases can provide cost-effective options for removing dissolved metals in contaminated groundwater. The current field-scale experiments demonstrate that indigenous bacteria can be stimulated to remove metals by injection of electron-donating substrates and nutrients into a contaminated aquifer. Groundwater at the investigation site is aerobic and contains high levels of lead, cadmium, zinc, copper, and sulfuric acid (pH = 3.1) derived from a car-battery recycling plant. During the experiments, lead, cadmium, zinc, and copper were almost completely removed by precipitation of solid sulfide phases, as pH increased from 3 to ∼ 5 and Eh dropped from +400 mV to -150 mV. X-ray and transmission electron microscopy (TEM) analyses of filtered material from the treated groundwater indicated the presence of newly formed nanocrystalline metal sulfides. Genetic sequencing indicated that the principal species of sulfate-reducing bacteria involved in the bioremediation process was Desulfosporosinus orientis. Geochemical modeling shows that oxidation of added substrates and subsequent bacterial sulfate reduction produced desired geochemical conditions (i.e., decreasing Eh and increasing pH) for the precipitation and sorption of metal sulfides. Geophysical survey results suggest that bioremediation lowers electrical conductance of groundwater and possibly increases the magnetic susceptibility of porous media. This study demonstrates that integrated geochemical, geophysical, and microbiological analyses, combined with theoretical modeling, can successfully track and predict the progress of subsurface bioremediation. 相似文献
9.
土壤有机质和外源有机物对甲烷产生的影响 总被引:25,自引:2,他引:25
对土壤有机质含量及组分、外源有机物和根系分泌对甲烷产生的影响作了综述。土壤产甲烷量和甲烷排放量随有机质含量增加而提高,与土壤中易矿化有机碳或沸水浸提有机碳含量呈显著相关。外源有机碳加入促进了土壤排放甲,刺激效果与外源有机碳的用量和组成有关。还原力强的有机物如纤维素和半纤维素较还原力弱的有机物如类脂和多糖能够产生更多的甲烷。甲醇、甲基化氨基酸等无其它微生物竞争利用的有机物能被产甲烷菌更多地转化成甲烷。植物根系分泌物也促进甲烷的产生,促进作用大小与植物种类及分泌物的数量和质量有关。外源有机物通过3种方式促进土壤甲烷产生;提高土壤的甲烷底物供应量,降低土壤氧化还原电位,刺激土壤原有有机碳的转化。 相似文献
10.
P. C. Onianwa 《Soil & Sediment Contamination》2001,10(6):577-591
Concentrations of Pb, Zn, Cd, Cu, Cr, Co, and Ni were determined in roadside topsoil collected from locations of varied vehicular traffic densities in the city of Ibadan, Nigeria, with a view to determining the level of contamination and the contribution of traffic density. Levels of Pb, Zn, Cd, and Cu were elevated above background concentrations measured in control areas. Average values (ppm) for all sample locations were Pb — 81±140; Zn — 48±37; Cd — 0.55±0.49; Cu — 17±17; Cr — 22.1±9.6; Co — 7.9±3.8; Ni — 10.5±9.7. Factors of accumulation of metals in roadsides relative to control sites were highest for Pb. Vehicular traffic was not an important source of chromium, cobalt and nickel, for which roadside concentrations were about those of the control sites. Metal concentrations were poorly correlated with traffic volumes. An average of about 60% of total soil concentration of the metals were determined to be held in bioavailable geochemical phases, of which the highest concentrations were mostly held in either the reducible or oxidizable phase. Levels of the metals in the topsoil were generally lower than the soil quality criteria of some developed countries. 相似文献
11.
A batch study on the removal of As(III) and As(V) ions from contaminated water by biosorption using powdered Psidium guajava (Guava) leaf as biosorbent was carried out in the present work. FT-IR (Fourier transform infrared) and SEM (scanning electron microscopy) were used to characterize the surface of the biosorbent. The effect of sorption parameters such as pH, temperature (T c), adsorbent dose (D c), and contact time (t c) were studied. At optimum treatment conditions, the maximum uptake of 1.06 mg of As(III) per gram and 2.39 mg of As(V) per gram onto the surface of biosorbent were obtained. Langmuir and Freundlich isotherm models were examined for sorption equilibrium at various temperatures. The sorption isotherm was favorable with the Freundlich model with the experimental data. Furthermore, higher uptake kinetics was tested for the pseudo-first-order and pseudo-second-order models. The pseudo-second-order model appeared to be the more suitable model to describe arsenic biosorption. ΔG 0 values were negative at all temperatures, confirming the feasible and spontaneous nature of the biosorption process. Solvent desorption studies help in understanding the mechanism of the adsorption process and also to check the stability of the loaded/spent adsorbents. HCl was found to show maximum effectiveness in the desorption of both As(III) and As(V) with the comparison of other solvents. 相似文献
12.
A study was carried out with maize as the test crop to investigate the bioavailability and leachability of heavy metals (HM) from HM-contaminated soils treated with composted manure. The application of composted manure increased the maize shoot growth by 32.3% and root growth by 30.5% compared with fresh manure. The concentration of HM in maize shoot varied in the order lead (Pb) > nickel (Ni) > zinc (Zn) > chromium (Cr) > copper (Cu) > cadmium (Cd). Whether for the shoot or root, the heavy metal concentrations decreased as the length of manure composting increased, but concentrations were higher in the root than the shoot. Composting decreased the bioavailability and leachability of HM and, hence, their export to the environment more effectively than direct use of fresh manure. Thus, the use of composted manure in place of fresh manure in polluted soils would be more beneficial for mitigating HM pollution. 相似文献
13.
Kai Zhang Xingqian Cui Daidu Fan Shangbin Xiao Yongge Sun 《Geomicrobiology journal》2013,30(10):881-893
AbstractHow microbes respond to substantial and increasing anthropogenic disturbance remains an open question in river systems. We tested the hypothesis that the source and distribution of anthropogenic organic matter (OM) were significant factors affecting the spatial variation of the microbial community composition of the Yangtze River sediments. Bulk geochemical proxies and lignin phenols suggested a general decrease of terrestrial C3 plants or soil OM input from the middle to the lower reaches. Fecal sterols inferred higher sewage contamination levels in the middle reaches. Polycyclic aromatic hydrocarbons (PAHs) distribution indicated a dominant biomass and coal combustion signal in the middle reaches, whereas a mixed source including petroleum combustion in the lower reaches. Phylogenetic analysis revealed a large portion of Methanobacteria and Verrucomicrobia enriched in the middle reaches, whereas OM-degrading bacteria, including Flavobacteria, Acidobacteria, and Alphaproteobacteria were dominant in the lower reaches. Quantitative PCR analyses and multivariate analysis further demonstrated that sources and distribution of OM had combined effects in shaping alpha and beta-diversity of sediment microbial communities. Sewage discharge and incomplete OM combustion, respectively, were associated with Methylococcaceae, Chloroflexi, and Bacteroidetes groups. This study provides a foundation for further understanding of the river sediment microbial composition, considering the continued increase of anthropogenic influences. 相似文献
14.
Extraction of Arsenic and Heavy Metals from Contaminated Mine Tailings by Soil Washing 总被引:2,自引:0,他引:2
In this study, the soil washing technique has been used to treat mine tailings contaminated heavily with arsenic and heavy metals at Jingok mine, which is one of the abandoned mines in Korea. The results showed that phosphoric acid, citric acid, oxalic acid, and sodium metabisulfite were highly effective in extracting arsenic and heavy metals. Among them, oxalic acid was the most effective (especially for Pb, Cu, and Zn), as even a residual fraction of arsenic was partly extracted. The optimum concentration of washing reagent and the ratio between the mine tailings and washing reagent were found to be 0.5 M and 1:20, respectively. In addition, the extraction kinetics of arsenic and heavy metals was fast, in which the reaction time of 30 minutes was deemed to be a sufficient contact time. From the results, it may be concluded that the low pH of washing solution and the amount of dissolved Fe may be considered as the most important factors in the extraction of arsenic and heavy metals. 相似文献
15.
The contamination of coal-mine soil by heavy metals is a widespread problem. This study analyzes the heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, and Hg) found in 33 surface soil samples from Xinzhuangzi, China restored coal-mining land used as cultivated land. The results show that the selected elements were cumulative, especially for Cd. An index of geo-accumulation indicates that the soil was practically uncontaminated by Cu, Zn, Ni, and Hg, uncontaminated to moderately contaminated by Pb and Cr, and moderately to heavily contaminated by Cd. Based on the U.S. Environmental Protection Agency's ecological soil screening levels (Eco-SSLs) for Cu, Zn, Ni, Pb, and Cd and the Dutch Target and Intervention Values for Cr and Hg, the plants and soil invertebrates were not likely greatly influenced by the selected metals. Although the Cd concentration was found to have no significant effect on plants and soil invertebrates, it is the only metal with a concentration significantly above that required by Chinese standards (HJ/T 332–2006) for edible agricultural products, indicating that Cd is the predominant factor that determines the use of the reclaimed coal-mining area for farmland. Thus, employing the reclaimed land as farmland may not be a good option. 相似文献
16.
Here we present a stochastic biogeochemical model for the formation, transformation and mineralization of natural organic
matter (NOM). The model is agent-based, with each software agent representing a single molecule of defined composition. Molecular
properties and reactivities are estimated from composition and environmental parameters. Environmental parameters including
temperature, pH, light intensity, dissolved O2, moisture and enzyme activities are user controlled. Time is treated in discrete steps, and during each step potential reaction
probabilities are evaluated for each molecule based on its structure and the environmental parameters. When reactions occur,
the molecular composition is modified accordingly. The model uses small natural products and biopolymers for inputs, and the
composition of the molecules produced is constrained only by the inputs and reaction stoichiometries, not by pre-defined structures.
Example simulations using the program AlphaStep are presented, in which the breakdown of biopolymers and the condensation
of small molecules both lead to molecular assemblages with elemental composition and average properties similar to those of
aquatic NOM. This batch-reactor model can be expanded to include spatial information and environmental feedback. 相似文献
17.
Sediment cores were collected at 5 stations in Lake Varese. They were analyzed for organic matter, N, P, organic C, Cd, Cr, Cu, Hg, Pb, Zn and PAHs. A sedimentological approach has been applied to estimate the ecological risk from identified pollutants.As in other eutrophic lakes in Northern Italy, this lake is also at considerable risk from heavy metal pollution. Cr, Cu and Cd showed the highest enrichment factors for the last 5 years, 23.4, 8.0 and 7.6 respectively. Other metals had enrichment factors ranging from 1 to 3. Fluoranthene was chosen as a representative PAH, derived from combustion products; its average value in surficial sediments ranged from 100 to 220 ng l-1 dw. This compound can be a hazard to human health and aquatic life. An evaluation of radionuclide distributions after the recent Chernobyl accident in the USSR (134Cs, 137C s, 131I, 106Ru) provided useful tracers to follow the cycling of pollutants bound to particulate matter in the aquatic ecosystem. 相似文献
18.
E. N. Chernova N. K. Khristoforova D. I. Vyshkvartsev 《Russian Journal of Marine Biology》2002,28(6):387-392
The contents of heavy metals in Sargassum algae and seagrasses from Pos'et Bay in the Sea of Japan were studied. The concentrations of Fe, Mn, Cu, Zn, and Cr in the algae and seagrass leaves were correlated with each other. The concentrations of heavy metals in brown algae and seagrasses from Pos'et Bay were largely close to background levels. Increased contents of some metals found in macrophytes in the area of the port of Pos'et were due to local environmental pollution; around Furugel'm Island, to periodical upwelling and drift currents from the mouth of the Tumannaya River; and, at Cape Deger, to the cyclonic current. 相似文献
19.
The annual dynamics of the decomposition rate, standing stock, and residence time of labile organic matter as an index of full self-purification were investigated in Novorossiisk Bay, Black Sea. The results are suggestive of fairly effective processes of biological self-purification in polluted waters of the bay. The decomposition rate was highest (0.3–0.7 mgO2/l per day) during the summer, and it decreased by 4–8 times in winter. The residence time of labile organic matter was 97–104 days in winter and 8–11 days in summer. Oxygen consumption rates measured in different areas of the bay conformed to their trophic status and were not above the normal level for summer. 相似文献
20.
This study was performed to investigate the potential health risk of heavy metals (HMs) through consumption of market food crops (MFCs) in the Sialkot and Gujranwala districts, Pakistan. Both study areas are located in industrialized regions of the country, where atmospheric pollution is a problem and irrigation of food crops is mostly practiced on the use of wastewater/contaminated water. For the purpose of this study, MFCs samples were collected and assessed for HMs (Cr, Ni, Cd, Pb, Mn, Cu, Zn, and Fe) by using flame atomic absorption spectrophotometry. Concentration of HMs such as Pb and Cd exceeded the Food and Agriculture/World Health Organization's recommended limits in all MFCs, while Cr in most of the vegetables of the Sialkot and Gujranwala districts also exceeded that limit. The health risk index was >1 in Triticum aestivum for Pb and Cd intake in the Sialkot district and only Pb in the Gujranwala district. Therefore, this study suggests pretreatment of wastewater and its utilization for lawns and green belts irrigation, rather than for food crops. This study also suggests a regular monitoring of HMs in the irrigation water, subsequent soil, air, and MFCs in order to prevent or reduce health hazards. 相似文献