首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Sone  A Naqui  C Kumar    B Chance 《The Biochemical journal》1984,223(3):809-813
A caa3-type terminal cytochrome c oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 containing three subunits showed conversion from resting into pulsed form. Upon pulsing (reduction and re-oxidation), the cytochrome c oxidase activity increased over 10-fold. This enhanced activity of the pulsed enzyme gradually decayed. Addition of phospholipids, necessary for the enzyme activity, did not affect this decay process. Small changes in the absorption spectrum were observed for the resting-into-pulsed transition and for H2O2 ligation to the pulsed enzyme. The e.p.r. spectrum of the resting enzyme was very similar to that of mitochondrial enzyme, but the transient g = 5, 1.78 and 1.69 set of e.p.r. signals, associated with the pulsed bovine heart oxidase, were not observed in the case of pulsed bacterium-PS3 enzyme.  相似文献   

2.
The effect of reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, on the activity of cytochrome c oxidase and on the cardiolipin content in bovine heart submitochondrial particles (SMP) was studied. ROS were produced by treatment of succinate-respiring SMP with antimycin A. This treatment resulted in a large production of superoxide anion, measured by epinephrine method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to mitochondrial mediated ROS generation, led to a marked loss of cytochrome c oxidase activity and to a parallel loss of cardiolipin content. Both these effects were completely abolished by SOD+catalase. Added cardiolipin was able to almost completely restore the ROS-induced loss of cytochrome c oxidase activity. No restoration was obtained with peroxidized cardiolipin. These results demonstrate that mitochondrial mediated ROS generation affects the activity of cytochrome c oxidase via peroxidation of cardiolipin which is needed for the optimal functioning of this enzyme complex. These results may prove useful in probing molecular mechanism of ROS-induced peroxidative damage to mitochondria which have been proposed to contribute to aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   

3.
A sensitive and reliable assay method was developed to characterize crude cell homogenates and subcellular fractions with regard to their superoxide dismutase (SOD) activities. The determination of SOD activities was based on the well-known spectrophotometric assay introduced by McCord & Fridovich [(1969) J. Biol. Chem. 244, 6049-6055], with partially succinylated (3-carboxypropionylated) rather than native ferricytochrome c as indicating scavenger. Partial succinylation of cytochrome c resulted in minimization of interference associated with the interaction of cytochrome c with mitochondrial cytochrome c oxidase or cytochrome c reductases. The further increase in specificity, with regard to exclusion of cytochrome c oxidase interference, gained as a consequence of the high pH of 10 enabled the analysis of samples as rich in cytochrome c oxidase activity as the mitochondrial fraction in the presence or absence of membrane-disrupting detergents. Linear relationships for the dependence of the SOD activities with protein concentration were obtained with rat liver homogenate, mitochondrial and microsomal fractions, indicating negligible interference. Furthermore, by choosing a high pH for the assay medium, a 4-fold increase in sensitivity compared with the classical SOD assay, carried out at pH 7.8, was gained as well as a more precise resolution of Cu/Zn-SOD and Mn-SOD by 2 mM-KCN in samples with a high ratio of Mn-SOD to Cu/Zn-SOD, such as mitochondria. The complete trapping of the O2.- radicals, which was more feasible at pH 10 than at pH 7.8, enabled the application of a simple equation derived for the calculation of appropriately defined units of SOD activity from a single experiment.  相似文献   

4.
A stoichiometric amount of methylmercuric chloride substantially inhibits cytochrome c oxidase function under steady-state turnover conditions, where the enzyme is using its substrates, cytochrome c and oxygen, rapidly and continuously. Under these conditions, a reduction in activity of approximately 40% is observed. This is in accord with the results of Mann and Auer [Mann, A.J., & Auer, H.E. (1980) J. Biol. Chem. 255, 454-458], who used mercuric chloride and ethylmercuric chloride. Paradoxically, we found that addition of methylmercuric chloride can increase the activity of cytochrome c oxidase during its initial substrate utilization. This rate enhancement, measured under conditions where the enzyme cycles only a few times, is maximal for the resting state of the enzyme. "Pulsed" cytochrome c oxidase (i.e., enzyme that has been recently reduced and reoxidized) is considerably activated with respect to the resting enzyme, showing faster turnover rates (Antonini, 1977; Brunori et al., 1979). No significant rate enhancement upon treatment with methylmercuric chloride is seen in initial substrate utilization if the enzyme is pulsed immediately before the assay. The apparently contradictory effects of methylmercuric chloride on the resting and pulsed states of the oxidase under low turnover conditions may be reconciled by a model in which mercurial binding greatly stabilizes the enzyme in a state resembling that of the pulsed enzyme. A decrease in conformational flexibility may be the basis of the mercurial-induced diminution in activity of the enzyme during steady-state turnover conditions.  相似文献   

5.
Cytochrome c oxidase forms tight binding complexes with the cytochrome c analog, porphyrin cytochrome c. The behaviour of the reduced and pulsed forms of the oxidase with porphyrin cytochrome c have been followed as functions of ionic strength; this behaviour has been compared with that of the resting oxidase [Kornblatt, Hui Bon Hoa and English (1984) Biochemistry 23, 5906-5911]. All forms of the cytochrome oxidase studied bind one porphyrin cytochrome c per 'functional' cytochrome oxidase (two heme a); it appears as though porphyrin cytochrome c and cytochrome c compete for the same site on the oxidase. The resting enzyme binds cytochrome c 8 times more strongly than porphyrin cytochrome c; the reduced enzyme, in contrast, binds the two with almost equal affinity. In all three cases, resting, pulsed and reduced, the heme-to-porphyrin distance is estimated to be about 3 nm. The tight-binding complexes formed between cytochrome oxidase and porphyrin cytochrome c can be dissociated by salt. Debye-Hückel analysis of salt titrations indicate that the resting enzyme and the reduced enzyme are similar in that the product of the interaction charges on the two proteins is about -14. The product of the charges for the pulsed enzyme is -25, indicating that on average another positive and negative charge take part in the interaction of the two proteins. While there is one tight binding site for cytochrome c per two heme a, cytochrome c is able to 'communicate' with four heme a. In the absence of cytochrome c, electron transfer from tetramethylphenylenediamine to the oxidase to oxygen results in the conversion of the resting form to the 'oxygenated'; in the presence of cytochrome c, the same electron transfer results in the appearance of the 'pulsed' form. Cytochrome c titrations of the enzyme show that a ratio of only one cytochrome c to four heme a is sufficient to convert all the oxidase to the 'pulsed' form. Porphyrin cytochrome c, like cytochrome c, catalyzes the same conversion with the same stoichiometry. The binding data and salt effects indicate that major structural alterations occur in the oxidase as it is converted from the resting to the partially reduced and subsequently to the pulsed form.  相似文献   

6.
The 2,6-dichlorophenolindophenol (DCIP)-reducing activity of the phagocytosis-associated NADPH oxidase was investigated using homogenates and a membrane fraction (F2) of elicited guinea pig peritoneal macrophages stimulated by phorbol myristate acetate. Essentially all of the stimulation-specific DCIP reduction under aerobic conditions could be inhibited when high concentrations of superoxide dismutase (SOD), about 10 times those usually used to inhibit the superoxide (O-2)-mediated cytochrome c reduction, were used. SOD inhibited the DCIP reduction by chemically generated O2- in the same manner as the stimulation-specific DCIP reduction by the macrophage F2, and the concentration of SOD necessary for 50% inhibition was about 10 times that for the reduction of cytochrome c. Under anaerobic conditions, however, the NADPH oxidase could reduce DCIP, though the rate was slow because we could not use a sufficiently high DCIP concentration. The observations indicate that the NADPH oxidase preferentially reduces oxygen under aerobic conditions, though the oxidase can reduce DCIP in the anaerobic state.  相似文献   

7.
X-ray absorption spectroscopy shows pulsed oxidase to be similar to resting oxidase but to lack the sulfur bridge between iron and copper of active sites (Powers, L., Y. Ching, B. Chance, and B. Muhoberac, 1982, Biophys. J., 37[2, Pt. 2]: 403a. [Abstr.] ) The first shell ligands and bond lengths of the pulsed oxidase active site heme most clearly fit the ferric peroxidases from horseradish and yeast, and the pulsed oxidase cyanide compound resembles the low spin hemoprotein cyanide compounds. The structural results are consistent with an aquo or a peroxo form for pulsed oxidase as is also observed by optical studies. These structural and chemical data are consistent with a role for the pulsed forms in a cyclic peroxidatic side reaction in which the pulsed and pulsed peroxide compounds act as peroxide scavengers. The peroxidatic role of cytochrome oxidase in the nonsulfur bridged form suggests the renaming of the "oxygenated" or "pulsed" forms on a functional basis as "peroxidatic" forms of cytochrome oxidase.  相似文献   

8.
The resting as well as the 420 nm and 428 nm forms of cytochrome oxidase have been studied in kinetic experiments with an excess of enzyme over reduced cytochrome c. No difference was found in the behavior of the two activated forms. With all three forms, a fraction of cytochrome a was reoxidized with a rate which was much lower than kcat. This suggests that intramolecular transfer to the dioxygen-reducing site occurs only if both cytochrome a and CuA are reduced. An initial rapid phase in the oxidation of cytochrome a in the pulsed and oxygenated enzymes is related to the presence of a three-electron-reduced dioxygen intermediate. The increased catalytic activity of pulsed and oxygenated oxidase can be explained on the basis of a shift in the redox equilibrium between cytochrome a and CuA.  相似文献   

9.
The reduction of cytochrome c oxidase by dithionite was reinvestigated with a flow-flash technique and with varied enzyme preparations. Since cytochrome a3 may be defined as the heme in oxidase which can form a photolabile CO adduct in the reduced state, it is possible to follow the time course of cytochrome a3 reduction by monitoring the onset of photosensitivity. The onset of photosensitivity and the overall rate of heme reduction were compared for Yonetani and Hartzell-Beinert preparations of cytochrome c oxidase and for the enzyme isolated from blue marlin and hammerhead shark. For all of these preparations the faster phase of heme reduction, which is dithionite concentration-dependent, is almost completed when the fraction of photosensitive material is still small. We conclude that cytochrome a3 in the resting enzyme is consistently reduced by an intramolecular electron transfer mechanism. To determine if this is true also for the pulsed enzyme, we examined the time course of dithionite reduction of the peroxide complex of the pulsed enzyme. It has been previously shown that pulsed cytochrome c oxidase can interact with H2O2 and form a stable room temperature peroxide adduct (Bickar, D., Bonaventura, J., and Bonaventura, C. (1982) Biochemistry 21, 2661-2666). Rather complex kinetics of heme reduction are observed when dithionite is added to enzyme preparations that contain H2O2. The time courses observed provide unequivocal evidence that H2O2 can, under these conditions, be used by cytochrome c oxidase as an electron acceptor. Experiments carried out in the presence of CO show that a direct dithionite reduction of cytochrome a3 in the peroxide complex of the pulsed enzyme does not occur.  相似文献   

10.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

11.
G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.  相似文献   

12.
The heme protein indoleamine 2,3-dioxygenase (IDO) initiates oxidative metabolism of tryptophan along the kynurenine pathway, and this requires reductive activation of Fe(3+)-IDO. The current dogma is that superoxide anion radical (O(2)(*-)) is responsible for this activation, based largely on previous work employing purified rabbit IDO and rabbit enterocytes. We have re-investigated this role of O(2)(*-) using purified recombinant human IDO (rhIDO), rabbit enterocytes that constitutively express IDO, human endothelial cells, and monocyte-derived macrophages treated with interferon-gamma to induce IDO expression, and two cell lines transfected with the human IDO gene. Both potassium superoxide and O(2)(*-) generated by xanthine oxidase modestly activated rhIDO, in reactions that were prevented completely by superoxide dismutase (SOD). In contrast, SOD mimetics had no effect on IDO activity in enterocytes and interferon-gamma-treated human cells, despite significantly decreasing cellular O(2)(*-) Similarly, cellular IDO activity was unaffected by increasing SOD activity via co-expression of Cu,Zn-SOD or by increasing cellular O(2)(*-) via treatment of cells with menadione. Other reductants, such as tetrahydrobiopterin, ascorbate, and cytochrome P450 reductase, were ineffective in activating cellular IDO. However, recombinant human cytochrome b(5) plus cytochrome P450 reductase and NADPH reduced Fe(3+)-IDO to Fe(2+)-IDO and activated rhIDO in a reconstituted system, a reaction inhibited marginally by SOD. Additionally, short interfering RNA-mediated knockdown of microsomal cytochrome b(5) significantly decreased IDO activity in IDO-transfected cells. Together, our data show that cytochrome b(5) rather than O(2)(*-) plays a major role in the activation of IDO in human cells.  相似文献   

13.
The first step in the catalytic cycle of cytochrome oxidase, the one-electron reduction of the fully oxidized enzyme, was investigated using a new photoactive binuclear ruthenium complex, [Ru(bipyrazine)2]2(quaterpyridine), (Ru2Z). The aim of the work was to examine differences in the redox kinetics resulting from pulsing the oxidase (i.e., fully reducing the enzyme followed by reoxidation) just prior to photoreduction. Recent reports indicate transient changes in the redox behavior of the metal centers upon pulsing. The new photoreductant has a large quantum yield, allowing the kinetics data to be acquired in a single flash. The net charge of +4 on Ru2Z allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. The photoexcited state Ru(II*) of Ru2Z is reduced to Ru(I) by the sacrificial electron donor aniline, and Ru(I) then reduces CuA with yields up to 60%. A stopped-flow-flash technique was used to form the pulsed state of cytochrome oxidase (the "OH" state) from several sources (bovine heart mitochondria, Rhodobacter sphaeroides, and Paracoccus denitrificans). Upon mixing the fully reduced anaerobic enzyme with oxygenated buffer containing Ru2Z, the oxidized OH state was formed within 5 ms. Ru2Z was then excited with a laser flash to inject one electron into CuA. Electron transfer from CuA --> heme a --> heme a3/CuB was monitored by optical spectroscopy, and the results were compared with the enzyme that had not been pulsed to the OH state. Pulsing had a significant effect in the case of the bovine oxidase, but this was not observed with the bacterial oxidases. Electron transfer from CuA to heme a occurred with a rate constant of 20,000 s-1 with the bovine cytochrome oxidase, regardless of whether the enzyme had been pulsed. However, electron transfer from heme a to the heme a3/CuB center in the pulsed form was 63% complete and occurred with biphasic kinetics with rate constants of 750 s-1 and 110 s-1 and relative amplitudes of 25% and 75%. In contrast, one-electron injection into the nonpulsed O form of the bovine oxidase was only 30% complete and occurred with monophasic kinetics with a rate constant of 90 s-1. This is the first indication of a difference between the fast form of the bovine oxidase and the pulsed OH form. No reduction of heme a3 is observed, indicating that CuB is the initial electron acceptor in the one-electron reduced pulsed bovine oxidase.  相似文献   

14.
A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.  相似文献   

15.
The reduction of a series of 2,5-bis(1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives with various 3,6 substituents by the enzyme xanthine oxidase has been studied. The reduction rate has been assayed by measuring the rate of reduction of cytochrome c, which is very efficiently reduced by reduced BABQ species. Under nitrogen, the reduction rate correlated with the quinone reduction potential and steric parameters. Comparing reduction rates under nitrogen and air demonstrates that at BABQ concentrations greater than 25 microM the competition for electrons from xanthine oxidase between oxygen and the BABQ derivative is dominated by the latter. This is also confirmed by the effect of superoxide dismutase (SOD): in the presence of a BABQ derivative, cytochrome c reduction can be totally inhibited by SOD, although the required amount of SOD depends on the redox potential of the quinones. This indicates that SOD causes the equilibrium between semiquinone and superoxide to shift, resulting in a decrease of the semiquinone concentration. It is concluded that reduction by xanthine oxidase is a simple and effective method for reducing aziridinylbenzoquinones.  相似文献   

16.
对从中国红豆杉的茎来源的愈伤组织经筛选而得的sinenxans高产细胞系Ts19的过氧化物酶(POD)、酯酶(EST)、细胞色素氧化酶(COD)、淀粉酶(AML)、多酚氧化酶(PPO)及超氧化物歧化酶(SOD)的同工酶,可溶性蛋白的含量及电泳谱带、超氧化物歧化酶、多酚氧化酶和苯丙氨酸解氨酶(PAL)的活性作了比较研究。并与培养过程中sinenxans含量的动态变化相比较,探索了这几种同工酶的酶谱和两种酶活性与sinenxans的生物合成的关系。旨在为建立紫杉醇生物合成的中间代谢模型奠定基础。  相似文献   

17.
The reactivity of pulsed cytochrome c oxidase toward carbon monoxide   总被引:1,自引:0,他引:1  
When pulsed cytochrome c oxidase is exposed to carbon monoxide in the absence of oxygen the enzyme is converted quickly to its CO-associated mixed valence state. The half-time for this reaction at 0 degree C is about 4 min. This is about 100 times faster than a similar reaction which begins with the resting form of the enzyme. The possible significance of this reaction in understanding the pulsed/resting phenomenon and the carbon monoxide oxygenase reactions of cytochrome oxidase is discussed.  相似文献   

18.
Ubiquinol-cytochrome c reductase (Complex III), cytochrome c and cytochrome c oxidase can be combined to reconstitute antimycin-sensitive ubiquinol oxidase activity. In 25 mM-acetate/Tris, pH 7.8, cytochrome c binds at high-affinity sites (KD = 0.1 microM) and low-affinity sites (KD approx. 10 microM). Quinol oxidase activity is 50% of maximal activity when cytochrome c is bound to only 25% of the high affinity sites. The other 50% of activity seems to be due to cytochrome c bound at low-affinity sites. Reconstitution in the presence of soya-bean phospholipids prevents aggregation of cytochrome c oxidase and gives rise to much higher rates of quinol oxidase. The cytochrome c dependence was unaltered. Antimycin curves have the same shape regardless of lipid/protein ratio, Complex III/cytochrome c oxidase ratio or cytochrome c concentration. Proposals on the nature of the interaction between Complex III, cytochrome c and cytochrome c oxidase are considered in the light of these results.  相似文献   

19.
The kinetics of electron transfer between cytochrome-c oxidase and ruthenium hexamine has been characterized using the native enzyme or its cyanide complex either solubilized by detergent (soluble cytochrome oxidase) or reconstituted into artificial phospholipid vesicles (cytochrome oxidase-containing vesicles). Ru(NH3)2+6 (Ru(II] reduces oxidized cytochrome a, following (by-and-large) bimolecular kinetics; the second order rate constant using the cyanide complex of the enzyme is 1.5 x 10(6) M-1 s-1, for the enzyme in detergent, and slightly higher for COV. In the case of COV the kinetics are not affected by the addition of ionophores. Upon mixing fully reduced cytochrome oxidase with oxygen (in the presence of excess reductants), the oxidation leading to the pulsed enzyme is followed by a steady state phase and (eventually) by complete re-reduction. When the concentrations of dioxygen and oxidase are sufficiently low (micromolar range), the time course of oxidation can be resolved by stopped flow at room temperature, yielding an apparent bimolecular rate constant of 5 x 10(7) M-1 s-1. After exhaustion of oxygen and end of steady state, re-reduction of the pulsed enzyme by the excess Ru(II) is observed; the concentration dependence shows that the rate of re-reduction is limited at 3 s-1 in detergent; this limiting value is assigned to the intramolecular electron transfer process from cytochrome a-Cua to the binuclear center. Using the reconstituted enzyme, the internal electron transfer step is sensitive to ionophores, increasing from 2-3 to 7-8 s-1 upon addition of valinomycin and carbonyl cyanide m-chlorophenylhydrazone. This finding indicates for the first time an effect of the electrochemical potential across the membrane on the internal electron transfer rate; the results are compared with expectations based on the hypothesis formulated by Brunori et al. (Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., and Wilson, M.T. (1985) EMBO J. 4, 2365-2368), and their bioenergetic relevance is discussed with reference to the proton pumping activity of the enzyme.  相似文献   

20.
Cytochrome c oxidase oxidizes several hydrogen donors, including TMPD (N,N,N',N'-tetramethyl-p-phenyl-enediamine) and DMPT (2-amino-6,7-dimethyl-5,6,7,8-tetrahydropterine), in the absence of the physiological substrate cytochrome c. Maximal enzyme turnovers with TMPD and DMPT alone are rather less than with cytochrome c, but much greater than previously reported if extrapolated to high reductant levels and (or) to 100% reduction of cytochrome a in the steady state. The presence of cytochrome c is, therefore, not necessary for substantial intramolecular electron transfer to occur in the oxidase. A direct bimolecular reduction of cytochrome a by TMPD is sufficient to account for the turnover of the enzyme. CuA may not be an essential component of the TMPD oxidase pathway. DMPT oxidation seems to occur more rapidly than the DMPT--cytochrome a reduction rate and may therefore imply mediation of CuA. Both "resting" and "pulsed" oxidases contain rapid-turnover and slow-turnover species, as determined by aerobic steady-state reduction of cytochrome a by TMPD. Only the "rapid" fraction (approximately 70% of the total with resting and approximately 85% of the total with pulsed) is involved in turnover. We conclude that electron transfer to the a3CuB binuclear centre can occur either from cytochrome a or CuA, depending upon the redox state of the binuclear centre. Under steady-state conditions, cytochrome a and CuA may not always be in rapid equilibrium. Rapid enzyme turnover by either natural or artificial substrates may require reduction of both and two pathways of electron transfer to the a3CuB centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号