首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent experimental results by Talathi et al. (Neurosci Lett 455:145–149, 2009) showed a divergence in the spike rates of two types of population spike events, representing the putative activity of the excitatory and inhibitory neurons in the CA1 area of an animal model for temporal lobe epilepsy. The divergence in the spike rate was accompanied by a shift in the phase of oscillations between these spike rates leading to a spontaneous epileptic seizure. In this study, we propose a model of homeostatic synaptic plasticity which assumes that the target spike rate of populations of excitatory and inhibitory neurons in the brain is a function of the phase difference between the excitatory and inhibitory spike rates. With this model of homeostatic synaptic plasticity, we are able to simulate the spike rate dynamics seen experimentally by Talathi et al. in a large network of interacting excitatory and inhibitory neurons using two different spiking neuron models. A drift analysis of the spike rates resulting from the homeostatic synaptic plasticity update rule allowed us to determine the type of synapse that may be primarily involved in the spike rate imbalance in the experimental observation by Talathi et al. We find excitatory neurons, particularly those in which the excitatory neuron is presynaptic, have the most influence in producing the diverging spike rates and causing the spike rates to be anti-phase. Our analysis suggests that the excitatory neuronal population, more specifically the excitatory to excitatory synaptic connections, could be implicated in a methodology designed to control epileptic seizures.  相似文献   

2.
How do humans and other animals accomplish coordinated movements? How are novel combinations of limb joints rapidly assembled into new behavioral units that move together in in-phase or anti-phase movement patterns during complex movement tasks? A neural central pattern generator (CPG) model simulates data from human bimanual coordination tasks. As in the data, anti-phase oscillations at low frequencies switch to in-phase oscillations at high frequencies, in-phase oscillations occur at both low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, a “seagull effect” of larger errors occurs at intermediate phases, and oscillations slip toward in-phase and anti-phase when driven at intermediate phases. These oscillations and bifurcations are emergent properties of the CPG model in response to volitional inputs. The CPG model is a version of the Ellias-Grossberg oscillator. Its neurons obey Hodgkin-Huxley type equations whose excitatory signals operate on a faster time scale than their inhibitory signals in a recurrent on-center off-surround anatomy. When an equal command or GO signal activates both model channels, the model CPG can generate both in-phase and anti-phase oscillations at different GO amplitudes. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases. Received: 22 August 1994 / Accepted in revised form: 13 May 1997  相似文献   

3.
Inspired by the temporal correlation theory of brain functions, researchers have presented a number of neural oscillator networks to implement visual scene segmentation problems. Recently, it is shown that many biological neural networks are typical small-world networks. In this paper, we propose and investigate two small-world models derived from the well-known LEGION (locally excitatory and globally inhibitory oscillator network) model. To form a small-world network, we add a proper proportion of unidirectional shortcuts (random long-range connections) to the original LEGION model. With local connections and shortcuts, the neural oscillators can not only communicate with neighbors but also exchange phase information with remote partners. Model 1 introduces excitatory shortcuts to enhance the synchronization within an oscillator group representing the same object. Model 2 goes further to replace the global inhibitor with a sparse set of inhibitory shortcuts. Simulation results indicate that the proposed small-world models could achieve synchronization faster than the original LEGION model and are more likely to bind disconnected image regions belonging together. In addition, we argue that these two models are more biologically plausible.  相似文献   

4.
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.  相似文献   

5.
This paper proposes a closed-loop optimal control model predicting changes between in-phase and anti-phase postural coordination during standing and related supra-postural activities. The model allows the evaluation of the influence of body dynamics and balance constraints onto the adoption of postural coordination. This model minimizes the instantaneous norm of the joint torques with a controller in the head space, in contrast with classical linear optimal models used in the postural literature and defined in joint space. The balance constraint is addressed with an adaptive ankle torque saturation. Numerical simulations showed that the model was able to predict changes between in-phase and anti-phase postural coordination modes and other non-linear transient dynamics phenomena.  相似文献   

6.
Observations in cultured mouse astrocytes suggest anti-phase synchronization of cytosolic calcium concentrations in nearest neighbor cells that are coupled through gap junctions. A mathematical model is used to investigate physiologic conditions under which diffusion of the second messenger inositol (1, 4, 5)-trisphosphate (IP(3)) through gap junctions can facilitate synchronized anti-phase Ca(2+) oscillations. Our model predicts anti-phase oscillations in both cytosolic calcium and IP(3) concentrations if (a) the gap junction permeability is within a window of values and (b) IP(3) is regenerated in the astrocytes via, e.g. phospholipase C(delta). This result sheds new light on the current dispute on the mechanism of intercellular calcium signaling. It provides indirect evidence for a partially regenerative mechanism as the model excludes anti-phase synchrony in the absence of IP(3) regeneration.  相似文献   

7.
A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic depression is considered. We show that synaptic depression expands the number of possible activity patterns that the network can display and allows for co-existence of different patterns. Specifically, the network supports different types of n-m anti-phase firing patterns, where one neuron fires n spikes followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n-n anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of these solutions co-exist. The multitude of n-m anti-phase patterns and their co-existence are not found when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions for the existence and co-existence of different anti-phase solutions. The generality and validity of these conditions are demonstrated through numerical simulations utilizing the Hodgkin-Huxley and Morris-Lecar neuronal models.  相似文献   

8.
We studied the dynamical behavior of a class of compound central pattern generator (CPG) models consisting of a simple neural network oscillator driven by both constant and periodic inputs of varying amplitudes, frequencies, and phases. We focused on a specific oscillator composed of two mutually inhibiting types of neuron (inspiratory and expiratory neurons) that may be considered as a minimal model of the mammalian respiratory rhythm generator. The simulation results demonstrated how a simple CPG model— with a minimum number of neurons and mild nonlinearities— may reproduce a host of complex dynamical behaviors under various periodic inputs. In particular, the network oscillated spontaneously only when both neurons received adequate and proportionate constant excitations. In the presence of a periodic source, the spontaneous rhythm was overriden by an entrained oscillation of varying forms depending on the nature of the source. Stable entrained oscillations were inducible by two types of inputs: (1) anti-phase periodic inputs with alternating agonist-antagonist drives to both neurons and (2) a single periodic drive to only one of the neurons. In-phase inputs, which exert periodic drives of similar magnitude and phase relationships to both neurons, resulted in varying disruptions of the entrained oscillations including magnitude attenuation, harmonic and phase distortions, and quasi-periodic interference. In the absence of significant phasic feedback, chaotic motion developed only when the CPG was driven by multiple periodic inputs. Apneic episodes with repetitive alternation of active (intrinsic oscillation) and inactive (cessation of oscillation) states developed when the network was driven by a moderate periodic input of low frequency. %and amplitudes of intermediate strength, Similar results were demonstrated in other, more complex oscillator models (that is, half-center oscillator and three-phase respiratory network model). These theoretical results may have important implications in elucidating the mechanisms of rhythmogenesis in the mature and developing respiratory CPG as well as other compound CPGs in mammalian and invertebrate nervous systems.  相似文献   

9.
Spontaneously occurring synaptic events (synaptic noise) recorded intracellularly are usually assumed to be independent of evoked postsynaptic responses and to contaminate measures of postsynaptic response amplitude in a roughly Gaussian manner. Here we derive analytically the expected noise distribution for excitatory synaptic noise and investigate its effects on amplitude histograms. We propose that some fraction of this excitatory noise is initiated at the same release sites that contribute to the evoked synaptic event and develop an analytical model of the interaction between this fraction of the noise and the evoked postsynaptic response amplitude. Recording intracellularly with sharp microelectrodes in the in vitro hippocampal slice preparation, we find that excitatory synaptic noise accounts for up to 70% of the intracellular recording noise, when inhibition is blocked pharmacologically. Up to 20% of this noise shows a significant correlation with the evoked event amplitude, and the behavior of this component of the noise is consistent with a model which assumes that each release site experiences a refractory period of approximately 60 ms after release. In contrast with classical models of quantal variance, our models predict that excitatory synaptic noise can cause the apparent variance of successive peaks in an excitatory synaptic amplitude histogram to decrease from left to right, and in some cases to be less than the variance of the measured noise.  相似文献   

10.
We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin–Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn cause a striking stabilization of the spiking frequency.  相似文献   

11.
In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation.  相似文献   

12.
13.
Using two-cell and 50-cell networks of square-wave bursters, we studied how excitatory coupling of individual neurons affects the bursting output of the network. Our results show that the effects of synaptic excitation vs. electrical coupling are distinct. Increasing excitatory synaptic coupling generally increases burst duration. Electrical coupling also increases burst duration for low to moderate values, but at sufficiently strong values promotes a switch to highly synchronous bursts where further increases in electrical or synaptic coupling have a minimal effect on burst duration. These effects are largely mediated by spike synchrony, which is determined by the stability of the in-phase spiking solution during the burst. Even when both coupling mechanisms are strong, one form (in-phase or anti-phase) of spike synchrony will determine the burst dynamics, resulting in a sharp boundary in the space of the coupling parameters. This boundary exists in both two cell and network simulations. We use these results to interpret the effects of gap-junction blockers on the neuronal circuitry that underlies respiration.  相似文献   

14.
A model or hybrid network consisting of oscillatory cells interconnected by inhibitory and electrical synapses may express different stable activity patterns without any change of network topology or parameters, and switching between the patterns can be induced by specific transient signals. However, little is known of properties of such signals. In the present study, we employ numerical simulations of neural networks of different size composed of relaxation oscillators, to investigate switching between in-phase (IP) and anti-phase (AP) activity patterns. We show that the time windows of susceptibility to switching between the patterns are similar in 2-, 4- and 6-cell fully-connected networks. Moreover, in a network (N = 4, 6) expressing a given AP pattern, a stimulus with a given profile consisting of depolarizing and hyperpolarizing signals sent to different subpopulations of cells can evoke switching to another AP pattern. Interestingly, the resulting pattern encodes the profile of the switching stimulus. These results can be extended to different network architectures. Indeed, relaxation oscillators are not only models of cellular pacemakers, bursting or spiking, but are also analogous to firing-rate models of neural activity. We show that rules of switching similar to those found for relaxation oscillators apply to oscillating circuits of excitatory cells interconnected by electrical synapses and cross-inhibition. Our results suggest that incoming information, arriving in a proper time window, may be stored in an oscillatory network in the form of a specific spatio-temporal activity pattern which is expressed until new pertinent information arrives.  相似文献   

15.
By assuming the brain as a multi-stable system, different scenarios have been introduced for transition from normal to epileptic state. But, the path through which this transition occurs is under debate. In this paper a stochastic model for seizure genesis is presented that is consistent with all scenarios: a two-level spontaneous seizure generation model is proposed in which, in its first level the behavior of physiological parameters is modeled with a stochastic process. The focus is on some physiological parameters that are essential in simulating different activities of ElectroEncephaloGram (EEG), i.e., excitatory and inhibitory synaptic gains of neuronal populations. There are many depth-EEG models in which excitatory and inhibitory synaptic gains are the adjustable parameters. Using one of these models at the second level, our proposed seizure generator is complete. The suggested stochastic model of first level is a hidden Markov process whose transition matrices are obtained through analyzing the real parameter sequences of a seizure onset area. These real parameter sequences are estimated from real depth-EEG signals via applying a parameter identification algorithm. In this paper both short-term and long-term validations of the proposed model are done. The long-term synthetic depth-EEG signals simulated by this model can be taken as a suitable tool for comparing different seizure prediction algorithms.  相似文献   

16.
We constructed a computer model of 128 interneurons, each with multiple dendritic branches and an axonal segment. The model neurons were interconnected by gap junctions between dendritic compartments, as are known to occur in rat and guinea-pig hilar interneurons. The model contained no excitatory synapses. In the presence of low-frequency spontaneous action potentials, the model generated synchronized population bursts, when gap junction resistance was 50 M and there were at least two gap junctions per neuron on average. Population bursts occurred only when the dendrites of model neurons were electrically excitable. Consistent with experiment, somatic hyperpolarization during the population burst uncovered partial spikes. In the model, partial spikes originated in electrically active dendrites driven by coupled dendrites. This model may account for population bursts in hilar interneurons that occur in 4-aminopyridine (4AP) together with blockers of GABAA and excitatory amino acid (EAA) receptors.  相似文献   

17.
The biophysical mechanisms that give rise to direction selectivity in the retina remain uncertain. Current evidence suggests that the directional signal first arises within the dendrites of starburst amacrine cells (SBACs). Two models have been proposed to explain this phenomenon, one based on mutual inhibitory interactions between SBACs, and the other positing an intrinsic dendritic mechanism requiring a voltage-gradient depolarizing towards the dendritic tips. We tested these models by recording current and voltage responses to visual stimuli in SBACs. In agreement with previous work, we found that the excitatory currents in the SBACs were directional, and remained directional when GABA receptors were blocked. Contrary to the mutual-inhibitory model, stimuli that produce strong directional signals in ganglion cells failed to reveal a significant inhibitory input to SBACs. Suppression of the tonic excitatory conductance, proposed to generate the dendritic voltage-gradient required for the dendrite autonomous model, failed to eliminate the directional signal in SBACs. However, selective block of tetrodotoxin-resistant sodium channels did reduce the strength of the directional excitatory signal in the SBACs. These results indicate that current models of direction-selectivity in the SBACs are inadequate, and suggest that voltage-gated excitatory channels, specifically tetrodotoxin-resistant sodium channels, are important elements in directional signaling. This is the first physiological evidence that tetrodotoxin-resistant sodium channels play a role in retinal information processing.  相似文献   

18.
A number of memory models have been proposed. These all have the basic structure that excitatory neurons are reciprocally connected by recurrent connections together with the connections with inhibitory neurons, which yields associative memory (i.e., pattern completion) and successive retrieval of memory. In most of the models, a simple mathematical model for a neuron in the form of a discrete map is adopted. It has not, however, been clarified whether behaviors like associative memory and successive retrieval of memory appear when a biologically plausible neuron model is used. In this paper, we propose a network model for associative memory and successive retrieval of memory based on Pinsky-Rinzel neurons. The state of pattern completion in associative memory can be observed with an appropriate balance of excitatory and inhibitory connection strengths. Increasing of the connection strength of inhibitory interneurons changes the state of memory retrieval from associative memory to successive retrieval of memory. We investigate this transition.  相似文献   

19.
Temporal patterns of activity which repeat above chance level in the brains of vertebrates and in the mammalian neocortex have been reported experimentally. This temporal structure is thought to subserve functions such as movement, speech, and generation of rhythms. Several studies aim to explain how particular sequences of activity are learned, stored, and reproduced. The learning of sequences is usually conceived as the creation of an excitation pathway within a homogeneous neuronal population, but models embodying the autonomous function of such a learning mechanism are fraught with concerns about stability, robustness, and biological plausibility. We present two related computational models capable of learning and reproducing sequences which come from external stimuli. Both models assume that there exist populations of densely interconnected excitatory neurons, and that plasticity can occur at the population level. The first model uses temporally asymmetric Hebbian plasticity to create excitation pathways between populations in response to activation from an external source. The transition of the activity from one population to the next is permitted by the interplay of excitatory and inhibitory populations, which results in oscillatory behavior that seems to agree with experimental findings in the mammalian neocortex. The second model contains two layers, each one like the network used in the first model, with unidirectional excitatory connections from the first to the second layer experiencing Hebbian plasticity. Input sequences presented in the second layer become associated with the ongoing first layer activity, so that this activity can later elicit the the presented sequence in the absence of input. We explore the dynamics of these models, and discuss their potential implications, particularly to working memory, oscillations, and rhythm generation.  相似文献   

20.
The number of neurons in mammalian cortex varies by multiple orders of magnitude across different species. In contrast, the ratio of excitatory to inhibitory neurons (E:I ratio) varies in a much smaller range, from 3:1 to 9:1 and remains roughly constant for different sensory areas within a species. Despite this structure being important for understanding the function of neural circuits, the reason for this consistency is not yet understood. While recent models of vision based on the efficient coding hypothesis show that increasing the number of both excitatory and inhibitory cells improves stimulus representation, the two cannot increase simultaneously due to constraints on brain volume. In this work, we implement an efficient coding model of vision under a constraint on the volume (using number of neurons as a surrogate) while varying the E:I ratio. We show that the performance of the model is optimal at biologically observed E:I ratios under several metrics. We argue that this happens due to trade-offs between the computational accuracy and the representation capacity for natural stimuli. Further, we make experimentally testable predictions that 1) the optimal E:I ratio should be higher for species with a higher sparsity in the neural activity and 2) the character of inhibitory synaptic distributions and firing rates should change depending on E:I ratio. Our findings, which are supported by our new preliminary analyses of publicly available data, provide the first quantitative and testable hypothesis based on optimal coding models for the distribution of excitatory and inhibitory neural types in the mammalian sensory cortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号