首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The capacity of a human germ-cell tumour line to repair radiation damage has been investigated by means of a clonogenic assay. Dose-rate dependence studies, split-dose experiments and experiments designed to measure repair of potentially lethal damage have been performed. The cells showed some ability to repair radiation-induced damage in all three types of experiment. An attempt has been made to understand the possible cellular mechanisms of these repair processes by the use of 3-aminobenzamide (3-AB), an agent thought to act by inhibition of ADP-ribosylation. 3-AB added 2 h prior to and removed 18 h after irradiation at a non-toxic dose to unirradiated cells caused a small but consistent increase in cell kill with acute (150 cGy min-1) irradiation, largely involving a reduction in the shoulder region of the survival curve, but had a greater effect in increasing cell kill at a dose rate of 7.6 cGy min-1 and an even greater effect at a dose rate of 1.6 cGy min-1. When 3-Ab was present 2 h prior to the first dose and between two equal doses in a split-dose experiment, inhibition of split-dose recovery was observed. In addition, some inhibition of potentially lethal damage recovery was observed with 3-AB. A possible role for poly(ADP-ribosylation) is thus implicated in the repair of radiation-induced damage of this human tumour cell line during continuous low dose rate or fractionated radiation schedules, although other effects of 3-AB on respiratory metabolism and/or purine synthesis cannot be eliminated as the cause of the observed inhibitory effects.  相似文献   

2.
Multi-endpoint biological monitoring of phosphine workers   总被引:1,自引:0,他引:1  
5-Aminosalicylic acid (5ASA), a prescribed drug for ulcerative colitis, is a potent scavenger of oxygen-derived free radicals. The present study was undertaken to ascertain its ability to protect against radiation-induced damage. The drug dose-dependent effect, optimum time of drug administration and radiation dose-dependent effect (0-4 Gy) on in vivo radiation protection against micronuclei induction in polychromatic erythrocytes (PCE) and normochromatic erythrocytes (NCE) were studied in the bone marrow of mice. Intraperitoneal injection of 10-125 mg/kg of the drug 30 min before whole body irradiation with 3 Gy produced a significant reduction in the frequency of micronucleated erythrocytes at 24 h after exposure. The optimum dose for protection without drug toxicity was 25 mg/kg body weight. Injection of 25 mg/kg of the drug 60 or 30 min before or within 15 min after 3 Gy whole body gamma-irradiation resulted in a significant decrease in the radiation-induced PCE and NCE with micronuclei (MPCE and MNCE) and an increase in the ratio of PCE to NCE (P/N), at 24 h post-irradiation. Maximum effect was seen when the drug was administered 30 min before irradiation. Therefore, to study the radiation dose-response, mice were pre-treated with 25 mg/kg of 5ASA 30 min before 1-4 Gy of gamma-irradiation. Radiation increased the MN frequency linearly (r(2)=0.99) with dose. Pre-treatment with 5ASA significantly reduced the MN counts to 40-50% of the radiation (RT) alone values, giving a dose modification factor (DMF) of 2.02 (MPCE) and 2.53 (MNCE). Irradiation resulted in a dose-dependent decline in the P/N ratio at all the doses of radiation studied. 5ASA produced a significant increase in the P/N ratio from that of irradiated controls, at all doses of radiations tested. These results show that 5ASA protect mice against radiation-induced MN formation and mitotic arrest.  相似文献   

3.
The radioprotective ability of melatonin was investigated in mice exposed to an acute whole-body gamma radiation dose of 815 cGy (estimated LD50/30 dose). The animals were observed for mortality over a period of 30 days following irradiation. The results indicated 100% survival for unirradiated and untreated control mice, and for mice treated with melatonin or solvent alone. Forty-five percent of mice exposed to 815 cGy radiation alone, and 50% of mice pretreated with solvent and irradiated with 815 cGy were alive at the end of 30 days. Irradiated mice which were pretreated with 125 mg/kg melatonin exhibited a slight increase in their survival (60%) (p=0.3421). In contrast, 85% of irradiated mice which were pretreated with 250 mg/kg melatonin were alive at the end of 30 days (p=0.0080). These results indicate that melatonin (at a dose as high as 250 mg/kg) is non-toxic, and that high doses of melatonin are effective in protecting mice from lethal effects of acute whole-body irradiation.  相似文献   

4.
To analyze in more detail the relation between the sensitivity of spermatogonial stem cells to killing and the induction of genetic damage, mature male mice received combined treatments with hydroxyurea (HU), 3-aminobenzamide (3-AB) and X-rays. Stem cell killing was determined using the repopulation index method and translocations were studied via spermatocyte analysis. HU was administered at 16 or at 48 h before further treatment in order to create stem cell populations with different sensitivities in whic the translocation induction and stem cell killing could be studied and compared. The sensitivities for cell death and genetic damage appeared to be strongly correlated: at 16 h after HU significantly higher values were found than at 48 h or in controls without HU pretreatment.By using 3-AB in the treatment schedules we were able to investigate whether the sensitization of stem cells towards cell death and genetic damage is the outcome of a radiation- or drug-induced G1 delay. The effect of 3-AB was most pronounced at 16 h after HU. This confirms that at this interval a large fraction of stem cells is in G1. Our data therefore indicate that all treatments that induce an enrichment of G1 cells also result in a sensitization of stem cells to cell killing or the induction of mutagenic damage.  相似文献   

5.
Modification of radiation induced damage in mouse intestine by WR-2721   总被引:3,自引:0,他引:3  
Intestinal protection in mice against radiation injury by WR-2721 (300 mg/kg body wt, i.p., 30 min before irradiation) was studied after whole body gamma irradiation (0.5, 1.5, 3.0, 4.5, or 6.0 Gy). Crypt survival and induction of apoptosis, and abnormal mitoses in crypt cells in the jejunum were studied on day 1, 3 and 7 after irradiation. Irradiation produced a significant decrease in crypt survival, whereas apoptosis and abnormal mitoses showed a significant increase from sham-treated control animals. Maximum changes in all the parameters were observed on day 1 after irradiation and the effect increased linearly with radiation dose. There was recovery at later intervals, which was inversely related to radiation dose. WR-2721 pre-treatment resulted in a significant increase in the number of surviving crypts, whereas the number of apoptotic cells in the crypts showed a significant decrease from respective irradiated controls on day 1 after exposure. The recovery was also faster in WR-2721 pre- treated animals. It is concluded that WR-2721 protects against gastrointestinal death by reducing radiation induced cell death, thereby maintaining a higher number of stem cells in the proliferating compartment.  相似文献   

6.
The effect of Teniposide (VM-26) pretreatment was studied on the micronuclei induction in the bone marrow of mice exposed to 0, 0.5, 1, 2 and 3 Gy of gamma radiation at 12, 24 and 36 h post-irradiation. Administration of 0.05 mg/kg body weight of VM-26 to mice before irradiation resulted in the significant enhancement of micronucleated polychromatic erythrocytes (MPCE) at 12, 24 and 36 h post-irradiation. Highest elevation in the frequency of MPCE was observed in VM-26+irradiation group after exposure to 0.5 Gy when compared to concurrent DDW+irradiation group. This increase was two fold higher in VM-26+irradiation group at 12 and 24 h, while it was 3 fold higher at 36 h post-irradiation compared to DDW+irradiation group. The peak frequency of MPCE was observed at 24 h post-irradiation in both groups, which declined thereafter. The frequency of micronucleated normochromatic erythrocytes (MNCE) increased in a dose dependent manner in both DDW+irradiation and VM-26+irradiation groups. However, the frequency of MNCE was significantly higher in the latter when compared to the former group. The frequency of MNCE exhibited a continuous elevation up to 36 h post-irradiation in both DDW+irradiation and VM-26+irradiation groups. Treatment of mice with teniposide before irradiation resulted in a significant decline in the PCE/NCE ratio compared to DDW+irradiation group. The PCE/NCE ratio continued to decline up to 36 h post-irradiation in both the groups. The dose response for MPCE and PCE/NCE ratio was linear quadratic, while it was linear for MNCE.  相似文献   

7.
δ-Tocotrienol (DT3), a vitamin E isoform, is associated with strong antioxidant and immunomodulatory properties. We confirmed the potent antioxidant activity in membrane systems and showed that DT3 is an effective radiation protector and mitigator. DT3 (4 μM, P < 0.001) inhibited lipid peroxidation in mouse liver microsomes and nitric oxide (NO) formation (20 μM DT3, P < 0.01) in RAW264.7 cells, a murine alveolar macrophage line. In CD2F1 mice exposed to lethal total-body radiation from a (60)Co γ-radiation source, a single subcutaneous (s.c.) injection of DT3 before or after irradiation produced a significant increase in 30-day survival. DT3 was effective from 18.75 to 300 mg/kg (--24 h, P < 0.001). A single dose of 150 or 300 mg/kg DT3 given 24 h before irradiation (radioprotection) resulted in dose reduction factors (DRFs) of 1.19 and 1.27, respectively (P < 0.001). Further, DT3 reduced radiation lethality when administered 2, 6 or 12 h after irradiation, and 150 mg/kg DT3 administered 2 h after exposure conferred a DRF of 1.1 (mitigation). The optimum schedule of 300 mg/kg DT3 24 h prior to 7 Gy significantly reduced pancytopenia compared to irradiated controls (P < 0.05). The large therapeutic potential of and multi-lineage hematopoietic recovery for DT3 warrants further studies.  相似文献   

8.
Synchronous G1 cells were given a priming dose of heat (45.5 degrees C for 15 min) and then heated and irradiated 6-120 h later. Compared to heat radiosensitization for cells irradiated 10 min after the priming heat dose (thermal enhancement ratio, TER of 2.6 for a 10-fold reduction in survival), heat radiosensitization 18-24 h after the priming heat dose was less (i.e., TER of 1.6 for radiation at 24 h compared with heat-radiation at 24 h). A thermotolerance ratio (TTR) at 24 h was calculated to be 2.6/1.6 = 1.6. TERs at 100-fold or 1000-fold reduction in survival and ratios of slopes of radiation survival curves also showed that the cells developed a similar amount of thermotolerance for heat radiosensitization at 18-24 h. Furthermore, since the TER for heat radiosensitization increased with heat killing either from the priming heat dose or the second heat dose in a similar manner for single or fractionated doses, the TER for nonthermotolerant and thermotolerant cells was the same when related to the heat damage (i.e., amount of killing from heat alone). When the radiation response of cells heated and irradiated 6-120 h after the priming heat dose was compared with the response of cells receiving radiation only, changes in TER as a function of time after the initial priming heat dose were shown to involve: recovery of heat damage interacting with the subsequent radiation dose, thermotolerance for heat radiosensitization, and redistribution of cells surviving the first heat dose into radioresistant phases of the cell cycle. In fact, redistribution resulted in a minimal TER at 72 h for heat-radiation compared with radiation alone, instead of at 24 h where maximal thermotolerance for heat killing was observed [P. K. Holahan and W. C. Dewey, Radiat. Res. 106, 111 (1986)]. These observations are discussed relative to clinical considerations and similar results reported from in vivo experiments.  相似文献   

9.
Dehydrozingerone (DZ) was explored for in vitro-in vivo antioxidant potential and in vivo radioprotective activity against whole body gamma irradiation in Swiss albino mice. DZ scavenged the ABTS (2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (1, 1-dipehnyl-2-picrylhydrazyl) free radicals at room temp. DZ reduced Fe (III) to Fe (II) at pH 7.4 and scavenged the NADH/phenazine methosulfate generated superoxide radical in cell free system. DZ also scavenged the nitric oxide radical generated by sodium nitroprusside. To evaluate the radioprotective activity, mice were exposed to whole body gamma irradiation 30 min after the drug treatment at a dose rate of 1.66 Gy/min. Pretreatment with DZ 75, 100 and 125 mg/kg, i.p. reduced the radiation induced mortality and increased the mean survival times (MSTs). An i.p. dose of DZ 100 mg/kg was found the most effective dose in preventing radiation sickness and increasing the MST. Pretreatment DZ100 mg/kg maintained the spleen index (spleen weight/body weight x 100) and stimulates the endogenous spleen colony forming units (CFU). Pretreatment with DZ100 mg/kg maintained the villus height close to normal, prevents mucosal erosion and basement membrane damage in irradiated mice jejunum. However, no significant reductions in dead, inflammatory and mitotic cells were observed in DZ pretreated mice, but there was an increased in crypt cells proliferation and regeneration. Pretreatment with DZ100 mg/kg significantly elevated the endogenous antioxidant enzymes (GSH, GST and SOD) in mice at 2, 4 and 8 h post sham irradiation. Radiation induced fall in endogenous antioxidant enzymes was significantly prevented by DZ pretreatment. Pretreatment with DZ 75 and 100 mg/kg reduced the radiation induced micronucleated polychromatic erythrocytes (MPCE) and normochromatic erythrocytes (MNCE) in mice bone marrow. DZ also maintained the polychromatic erythrocytes (PCE) and normochromatic erythrocytes (NCE) ratio (P/N ratio) in irradiated mice. Dose modifying factor (DMF) was calculated by using the graded radiation dose (8.0, 9.0, 9.5 and 10 Gy). DZ 100 mg/kg elevated radiation LD(50) from 9.1 to 10.0 Gy, indicating the DMF of 1.09.  相似文献   

10.
Studies are reported of the enhancement of stem cell recovery following whole body irradiation as a result of prior administration of cyclophosphamide. It is shown that the much larger enhancement of regeneration observed for the hosts own surviving stem cells, compared to the regeneration of injected bone marrow stem cells, is due to the different numbers of stem cells initiating the regeneration in conjunction with the time course of stem cell regeneration. The results show that the environmental changes produced by cyclophosphmide greatly enhance haemopoietic recovery even though at the dose used this agent is relatively toxic to stem cells. Furthermore it has been shown that the level of stem cell regeneration is nearly independent of the gamma-ray dose in the range 3-8 gray (300-800 rad). If human bone marrow should respond similarly it follows that regeneration produced by cytotoxic drugs administered prior to radiation embodies a considerable safety factor as far as recovery of the haemopoietic system is concerned.  相似文献   

11.
Studies are reported of the enhancement of stem cell recovery following whole body irradiation as a result of prior administration of cyclophosphamide. It is shown that the much larger enhancement of regeneration observed for the hosts own surviving stem cells, compared to the regeneration of injected bone marrow stem cells, is due to the different numbers of stem cells initiating the regeneration in conjunction with the time course of stem cell regeneration. The results show that the environmental changes produced by cyclophosphamide greatly enhance haemopoietic recovery even though at the dose used this agent is relatively toxic to stem cells. Furthermore it has been shown that the level of stem cell regeneration is nearly independent of the γ-ray dose in the range 3–8 gray (300–800 rad). If human bone marrow should respond similarly it follows that regeneration produced by cytotoxic drugs administered prior to radiation embodies a considerable safety factor as far as recovery of the haemopoietic system is concerned.  相似文献   

12.
IL-1 has putative chemo- and radioprotective properties, but its effects on primitive hemopoietic stem cell (PHSC) and early multilineage precursor function when given with these modalities is unknown. C57BL6/J (B6) mice, given IL-1 20 h before cyclophosphamide (200 mg/kg for four biweekly doses) or before irradiation (500 cGy), were sacrificed after 4 wk. Their marrow was used as donor cells, and that from B6-Hbb(dGpi1a) (B6-GPI) mice was used as competitor cells in competitive repopulation. Percentages of B6 cells were measured at 30 and 150 days. Stem cell numbers were estimated using binomial statistics. IL-1 alone did not affect stem cell function. As expected, significant declines in early multilineage precursor and PHSC function occurred with chemotherapy and radiation alone. IL-1 with chemotherapy led to exacerbation of these losses in function and numbers (p < 0.05). A similar reduction in function occurred using IL-1 before irradiation. In summary, IL-1 with chemotherapy or radiation worsened chemotherapy- and radiation-induced functional damage to PHSC and other hemopoietic precursors, suggesting that improvements in survival do not necessarily translate into preservation of hemopoietic function.  相似文献   

13.
Meloxicam, a selective inhibitor of cyclooxygenase 2, a nonsteroidal anti-inflammatory drug with an improved side-effects profile in terms of gastrointestinal toxicity, has been found to stimulate hematopoiesis in whole-body gamma-irradiated mice. A distinct corroboration of this positive action of meloxicam is an enhancement of the recovery of hematopoietic progenitor cells committed to granulocyte-macrophage and erythroid development, which has been demonstrated in sublethally irradiated animals treated with meloxicam at a dose of 20 mg/kg administered intraperitoneally either singly 1 h before irradiation or repeatedly after radiation exposure. The results suggest that meloxicam can be added to the list of biological response modifiers that can be used in the treatment of hematopoietic damage induced by ionizing radiation.  相似文献   

14.
Angiogenesis is critical for tumor development, growth and metastasis. The vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) and their tyrosine kinase receptors are major regulators of angiogenesis. Radiation induces the production of VEGF, FGF and PDGF in many tumor cells. We hypothesized that inhibition of the function of these growth factors could inhibit tumor angiogenesis and thereby enhance the efficacy of radiation therapy. To test this hypothesis, we used the small molecule inhibitors SU5416 (an inhibitor for Vegf receptor) and SU6668 (an inhibitor for Vegf, Fgf and Pdgf receptors) alone and in combination with fractionated irradiation to treat C3H mice bearing SCC VII carcinomas. The SCC VII tumors express Vegf, Fgf2 (also known as bFGF), Pdgf and their associated receptors. Animals were given either SU5416 or SU6668 daily before or after irradiation (2 Gy per fraction per day for 5 days). The results from these experiments demonstrate that administration of either SU5416 or SU6668 without radiation delayed tumor growth. Administration of SU5416 at a dose of 25 mg/kg per day (the maximum tolerated effective dose) inhibited tumor growth by 17.9% on day 7 (P < 0.05 compared to untreated control mice) and produced an average tumor growth delay time of 0.5-2.0 days. When combined with fractionated irradiation, administration of SU5416 increased the inhibition of tumor growth to 50-53% on day 7 and the tumor growth delay time to 5.7-6.5 days (P < 0.001 compared with SU5416 alone; P < or = 0.05 compared with radiation alone). SU6668 alone inhibited tumor growth in a dose-dependent manner. Administration of SU6668 at a dose of 75 mg/kg per day (a suboptimal dose) inhibited tumor growth by 36% on day 7 and produced an average tumor growth delay time of 3.3 +/- 1.4 days. The combination of SU6668 with fractionated radiation increased inhibition of tumor growth to 66-70% and the tumor growth delay time from 3.3 days to 11.9 days (P < or = 0.001 compared with either radiation alone or SU6668 alone). Administration of these agents before or after irradiation produced similar results (P = 0.40 for SU5416; P = 0.98 for SU6668). SU5416 or SU6668 alone or in combination with radiation was very well tolerated with little or no toxicity. These results suggest that inhibition of Vegf, Fgf and Pdgf receptor function by SU5416 and SU6668 can enhance the efficacy of irradiation. The targeting of multiple tyrosine kinase receptors by SU6668 is more effective than inhibition of the Vegf receptor alone by SU5416 for the enhancement of tumor cell killing by fractionated irradiation.  相似文献   

15.
The estimation of transgenerational genetic risk of radiation exposure to non-human species is crucial for the protection of ecosystems. Here we determined the frequency of specific-locus mutations at the five pigmentation loci in medaka spermatogonial stem cells after gamma irradiation at 0.03 cGy/min and 95 cGy/min. At each total dose, the mutation frequency was significantly lower in the 0.03-cGy/min group than in the 95-cGy/min group, suggesting a dose-rate effect. The ratio of the induced mutation frequency at 0.03 cGy/min to that at 95 cGy/min was approximately 0.42 from 0 to 1.9 Gy and approximately 0.33 from 1.9 to 4.75 cGy. In the mouse, this ratio is estimated to be 0.33 (Russell and Kelly, Proc. Natl. Acad. Sci. USA 79, 542-544, 1982). It is thus possible that the magnitude of the dose-rate effect on transgenerational mutation frequencies is comparable between mouse and medaka spermatogonia, suggesting similar dose-rate effects among vertebrates.  相似文献   

16.
Differential radioprotection between normal tissues and carcinoma was observed in C3H/J mice treated with a combination of 5-hydroxy L-tryptophan (5-HTP, 100 mg/kg) and 2-aminoethylisothiuronium bromide hydrobromide (AET, 20 mg/kg). Protection to normal tissues was judged by LD50(30) and by radiation induced damage to bone marrow(BM) using clonogenic ability of blood forming stem cells (10 day CFUs) as the criteria. Pretreatment with 5-HTP + AET combination 30 min before whole body gamma radiation (WBGR) enhanced the recoveries of the number of blood forming stem cells in BM of irradiated mice after 0, 7th and 10th day of irradiation. LD50(30) for C3H/J mice was 7.3 Gy and the dose modifying factor (DMF) of 5-HTP + AET combination was 1.76. On the contrary, pretreatment with this combination did not protect the mammary carcinoma transplanted in C3H/J mice, when exposed to 80 Gy soft X-rays.  相似文献   

17.
Oncogenic transformation of C3H 10T1/2 cells was determined after exposure to graded doses of 4.3-MeV alpha particles LET = 101 keV/microns. The source of alpha particles was 244Cm and the irradiation was done in an irradiation chamber built for the purpose. Graded doses in the range of 0.2 to 300 cGy were studied with special emphasis on the low-dose region, with as many as seven points in the interval up to 10 cGy. The dose-effect relationship was a complex function. Transformation frequency increased with dose up to 2 cGy; it seemed to flatten at doses between 2 and 20 cGy but increased again at higher doses. A total of 21 cGy was delivered in a single dose or in 3 or 10 equal fractions at an interval of 1.5 h. An inverse dose-protraction effect of 1.4 was found with both fractionation schemes. Measurements of the mitotic index of the population immediately before the various fractions revealed a strong effect on the rate of cell division even after very low doses of radiation. Mitotic yield decreased markedly with the total dose delivered, and it was as low as 50% of the control value after 4.2 cGy and 20% after 14 cGy with both fractionation schemes.  相似文献   

18.
Effect of pre-irradiation administration of different doses of RH-3, the herbal preparation of an Indian medicinal plant Hippophae rhamnoides, 30 min before 10 Gy whole body gamma irradiation was studied. Doses between 25 to 35 mg/kg body wt. were found to render > 80 % survival in mice. In order to investigate whether RH-3 protected against radiation induced genotoxicity, mice were administered different doses of RH-3, 30 min before 2 Gy dose and compared with untreated, RH-3 treated and irradiated controls. The bone marrow cells were collected at different time intervals following various treatments and processed for scoring micronuclei (MN). Administration of RH-3 alone did not enhance the MN frequency as compared to the control, and radiation dose of 2 Gy significantly enhanced the MN frequency (3.1 %, P < 0.01). Pre-irradiation treatment with RH-3, however, reduced the radiation induced MN frequency in a drug dose dependent manner suggesting its radioprotective efficacy. The protective effect of RH-3 on radiation induced perturbations in cell cycle progression was studied flowcytometrically in mouse bone marrow cells. RH-3 treatment (30 mg/kg body wt.) enhanced DNA synthesis (S-phase) in unirradiated controls and also countered radiation induced depression of S-phase to facilitate replenishment of cells lost due to radiation injury.  相似文献   

19.
Radioprotective property of Moringa oleifera leaves was investigated in healthy adult Swiss albino mice. Animals were injected (ip) with 150 mg/kg body weight of 50% methanolic extract (ME) of M. oleifera leaves, as a single dose, or in 5 daily fractions of 30 mg/kg each, and exposed to whole body gamma irradiation (RT, 4 Gy) 1 hr later. Five animals from each group were sacrificed at 1, 2 and 7 days after treatment. Bone marrow protection was studied by scoring aberrations in metaphase chromosomes and micronucleus induction in polychromatic erythrocytes and normochromatic erythrocytes. Pretreatment with a single dose of 150 mg/kg ME significantly reduced the percent aberrant cells to 2/3rd that of RT alone group on day 1 and brought the values to normal range by day 7 post-irradiation. A similar effect was also seen for the micronucleated cells. Fractionated administration of ME (30 mg/kg x 5) gave a higher protection than that given by the same dose administered as a single treatment. ME also inhibited the Fenton reaction-generated free radical activity in vitro in a concentration dependent manner. These results demonstrate that pretreatment with the methanolic leaf extract of M. oleifera confers significant radiation protection to the bone marrow chromosomes in mice and this may lead to the higher 30 day survival after lethal whole body irradiation.  相似文献   

20.
To determine the effect of oncogene expression on gamma radiation sensitivity of hematopoietic compared to fibroblastic cells, we selected clonal sublines of an interleukin-3 (IL-3)-dependent hematopoietic progenitor cell line 32D cl 3 and NIH/3T3 embryo fibroblastic cells following transfection with each oncogene linked to the mycophenolic acid resistance gene. Each mycophenolic acid-resistant subclone demonstrated high levels of specific poly(A)+ mRNA for each oncogene. The parent line 32D cl 3 demonstrated similar radiosensitivity at 116 cGy/min (D0 126, n 1.17) compared to 5 cGy/min (D0 123, n 1.65). This pattern was not altered in subclones of 32D cl 3 cells transfected with the epidermal growth factor (EGF) receptor gene and grown in EGF (at 116 cGy/min D0 104, n 0.998, at 5 cGy/min D0 115, n 1.09), or in 32D cl 3 cells expressing the v-sis oncogene (at 116 cGy/min D0 122.4, n 1.79, at 5 cGy/min D0 135, n 1.43). In contrast, expression of the transfected oncogenes v-erb-B, v-abl, or v-src conferred significant radioresistance at 5 cGy/min dose rate (D0 194, n 1.77; D0 165.5, n 1.56; D0 171, n 1.28, respectively). With the exception of v-sis, oncogene expression resulted in nonautocrine factor independence of 32D cl 3 subclones, and production of donor origin tumors in syngeneic new-born or adult mice. Two rare spontaneous factor-independent subclones of 32D cl 3 were also tested. Nonautocrine clone 32D cl 2 demonstrated significantly increased radioresistance at low dose rate (D0 186, n 1.63), while autocrine (IL-3 producing) subclone 32D cl 4 revealed no significant increase in radioresistance at 5 cGy/min. The parent fibroblast cell line NIH/3T3 showed an intrinsic relative radioresistance at low dose rate (at 5 cGy/min D0 157.3, n 1.81, compared to 116 cGy/min D0 134.3, n 1.57). Expression in NIH/3T3 of transfected oncogenes v-abl, v-fms, v-fos, or H-ras increased radioresistance at low dose rate (D0 208.6, n 1.61; D0 206.6, n 1.51; D0 167.5, n 1.85; and D0 206.8, n 1.08, respectively). Thus expression of each of several oncogenes induces resistance to gamma irradiation at 5 cGy/min in hematopoietic and fibroblast cell lines. These data may help explain the clinical recurrence of oncogene-expressing leukemia and lymphoma cells after marrow stem cell ablative doses of low-dose-rate total-body irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号