首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cyclin-dependent kinase (CDK) inhibitor p27kip1 is an important negative regulator of the cell cycle that sets a threshold for mitogenic signals in T lymphocytes, and is required for T cell anergy in vitro. To determine whether p27(kip1) is required for tolerance in vivo, we performed cardiac allograft transplantation under conditions of combined CD28/CD40L costimulatory blockade. Although this treatment induced long-term allograft survival in wild-type recipients, costimulatory blockade was no longer sufficient to induce tolerance in mice lacking p27kip1. Rejected allografts from p27kip1-/- mice contained more CD4+ T lymphocytes and exhibited more tissue damage than allografts from tolerant, wild-type mice. Infiltrating p27kip1-deficient T cells, but not wild-type T cells, exhibited nuclear expression of cyclins E and A, indicating uncontrolled T cell cycle progression in the graft. The failure of tolerance in p27kip1-/- mice was also accompanied by markedly increased numbers of allospecific, IFN-gamma-producing cells in the periphery, and occurred despite apparently normal regulatory T cell activity. These data demonstrate that the CDK inhibitor p27kip1 enforces the costimulatory requirement for the expansion and differentiation of alloimmune effector T lymphocytes in vivo, and point to CDKs as novel targets for immunosuppressive or tolerance-inducing therapies.  相似文献   

2.
A diabetogenic gene prevents T cells from receiving costimulatory signals.   总被引:2,自引:0,他引:2  
T cell fate following antigen encounter is determined by several intracellular signals generated by the interaction of the T cell with an antigen-presenting cell. In the periphery activation requires T cell receptor signaling (signal one) in combination with costimulatory signals (signal two), usually provided through the cognate interaction of CD28 and B7 molecules. Provision of signal one alone to purified murine peripheral T cells in vitro induces apoptosis or anergy rather than promoting activation. These T cells can be rescued from apoptosis if they are provided with costimulation supplied, for example, by engaging the CD28 co-receptor with an anti-CD28 monoclonal antibody or by adding an exogenous source of interleukin-2. However, a majority of peripheral T cells from autoimmune, diabetes-prone Biobreeding (BB) rats exhibited different responses to these stimuli. T cells from these rats could not be rescued from apoptosis by costimulation. This was not due to the inability of BB-DP T cells to upregulate CD28 and the IL-2 receptor in response to TCR crosslinking. The failure of these costimulatory interactions to rescue BB-DP T cells segregated with the diabetes-susceptibility gene iddm1. Iddm1 in the rat causes peripheral T cell lymphopenia, which is associated with a dramatically shortened peripheral T cell life span. Our results indicate that a diabetogenic gene may contribute to autoimmunity by negating costimulatory signals important for the survival of long-lived peripheral T cells.  相似文献   

3.
Cell division drives T cell clonal expansion and differentiation, and is the result of concerted signaling from Ag, costimulatory, and growth factor receptors. How these mitogenic signals are coupled to the cell cycle machinery in primary T cells is not clear. We have focused on the role of p27kip1, a major cyclin-dependent kinase binding protein expressed by CD4+ T cells. Our studies using p27kip1 gene dosage demonstrate that early after activation, p27kip1 acts to promote, rather than inhibit, G1 to S phase progression within the first division cycle. However, throughout subsequent cell divisions p27kip1 behaves as a negative regulator, directly establishing the threshold amount of growth factor signaling required to support continued cell division. During this phase, signals from CD28 and IL-2R cooperate with the TCR to "tune" this threshold by inducing the degradation of p27kip1 protein, and we show that agents that block these pathways require elevated p27kip1 levels for their full antiproliferative activity. Finally, we show that p27kip1 opposes the development of CD4+ T cell effector function, and is required for the full development of anergy in response to a tolerizing stimulus. Our results suggest that p27kip1 plays a complex and important role in the regulation of cell division and effector function in primary CD4+ T cells.  相似文献   

4.
The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained.  相似文献   

5.
The cyclin/cyclin-dependent kinase (cdk) inhibitor p27(kip1) is thought to be responsible for the onset and maintenance of the quiescent state. It is possible, however, that cells respond differently to p27(kip1) in different conditions, and using a BALB/c-3T3 cell line (termed p27-47) that inducibly expresses high levels of this protein, we show that the effect of p27(kip1) on cell cycle traverse is determined by cell density. We found that ectopic expression of p27(kip1) blocked the proliferation of p27-47 cells at high density but had little effect on the growth of cells at low density whether exponentially cycling or stimulated from quiescence. Regardless of cell density, the activities of cdk4 and cdk2 were markedly repressed by p27(kip1) expression, as was the cdk4-dependent dissociation of E2F4/p130 complexes. Infection of cells with SV40, a DNA tumor virus known to abrogate formation of p130- and Rb-containing complexes, allowed dense cultures to proliferate in the presence of supraphysiological amounts of p27(kip1) but did not stimulate cell cycle traverse when cultures were cotreated with the potent cdk2 inhibitor roscovitine. Our data suggest that residual levels of cyclin/cdk activity persist in p27(kip1)-expressing p27-47 cells and are sufficient for the growth of low-density cells and of high-density cells infected with SV40, and that effective disruption of p130 and/or Rb complexes is obligatory for the proliferation of high-density cultures.  相似文献   

6.
7.
Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is regulated through phosphorylation at T187 and subsequent SCF(skp2)-dependent ubiquitylation. However, detailed analysis of this process revealed the existence of additional pathways that regulate the abundance of the protein in early G1 and as cells exit quiescence. Here, we report on a molecular mechanism that regulates p27 stability by phosphorylation at T198. Phosphorylation of p27 at T198 prevents ubiquitin-dependent degradation of free p27. T198 phosphorylation also controls progression through the G1 phase of the cell cycle by regulating the association of p27 with cyclin-cdk complexes. Our results unveil the molecular composition of a pathway, which regulates the abundance and activity of p27kip1 during early G1. They also explain how the T187- and the T198-dependent turnover systems synergize to allow cell cycle progression in G1.  相似文献   

8.
CD28 provides a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell activation, cytokine production, and clonal expansion. We have recently shown that CD28 directly regulates progression of T lymphocytes through the cell cycle. Although a number of signaling pathways have been linked to the TCR/CD3 and to CD28, it is not known how these two receptors cooperate to induce cell cycle progression. Here, using cell-permeable pharmacologic inhibitors of phosphatidylinositol 3-hydroxykinase (PI3K) and mitogen-activated protein kinase kinase (MEK1/2), we show that cell cycle progression of primary T lymphocytes requires simultaneous activation of PI3K- and MEK1/2-dependent pathways. Decreased abundance of cyclin-dependent kinase inhibitor p27(kip1), which requires simultaneous TCR/CD3 and CD28 ligation, was dependent upon both MEK and PI3K activity. Ligation of TCR/CD3, but not CD28 alone, resulted in activation of MEK targets extracellular signal-related kinase 1/2, whereas ligation of CD28 alone was sufficient for activation of PI3K target protein kinase B (PKB; c-Akt). CD28 ligation alone was also sufficient to mediate inactivating phosphorylation of PKB target glycogen synthase kinase-3 (GSK-3). Moreover, direct inactivation of GSK-3 by LiCl in the presence of anti-CD3, but not in the presence of anti-CD28, resulted in down-regulation of p27(kip1), hyperphosphorylation of retinoblastoma tumor suppressor gene product, and cellular proliferation. Thus, inactivation of the PI3K-PKB target GSK-3 could substitute for CD28 but not for CD3 signals. These results show that the PI3K-PKB pathway links CD28 to cell cycle progression and suggest that p27(kip1) integrates mitogenic MEK- and PI3K-dependent signals from TCR and CD28 in primary T lymphocytes.  相似文献   

9.
目的:研究p27kip1蛋白和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)在星形细胞瘤中的表达与肿瘤病理分级的关系,探讨p27kip1蛋白在星形细胞瘤演变过程中的意义。方法:SP免疫组化法对64例星形细胞瘤的p27kip1蛋白和PCNA表达进行观察。结果:随着病理级别的升高,p27kip1阳性细胞百分率降低,而PCNA则相反,两者的表达成显著负相关。结论:p27kip1表达的缺失可能与星形细胞瘤的发生发展密切相关,PCNA能较客观地反映肿瘤的恶性程度。  相似文献   

10.
One of the diabetes susceptibility genes of the BB/W (Biobreeding/Worcester) rat maps to the lyp locus on chromosome 4. The BB/W lyp allele is responsible for a severe peripheral T lymphopenia. Correction of this lymphopenia by transfer of normal, histocompatible T cells prevents diabetes, providing T cell reconstitution is initiated before insulitis. We have analyzed this time-dependent regulation of the diabetogenic process by normal T cells. We demonstrate that T cell reconstitution after the initiation of insulitis precipitates the onset of diabetes through the recruitment of donor T cells to the autoimmune process. This inability of normal T cells to regulate primed diabetogenic BB/W T cells and their own autoreactive potential were observed when normal T cells outnumbered pathogenic T cells by approximately 1000-fold. Analysis of donor-derived T cells recovered from BB/W rats that were reconstituted before insulitis, and hence protected from diabetes, demonstrates that early T cell reconstitution of BB/W rats does not result in a long term physical or functional depletion of islet cell-specific T cell precursors among donor cells or in the expansion of T cells that can regulate the activation and expansion of diabetogenic T cells.  相似文献   

11.
12.
The localization of the cyclin-dependent kinase inhibitor p27kip1 is dependent on the phosphorylation of one of three key amino acid residues: S10, T157 and T198. However, it was unclear whether endogenous p27kip1 is phosphorylated at T198 in the living cell. In the present work we describe the generation and characterization of a polyclonal antibody able to recognize recombinant, transfected as well as endogenous T198-phosphorylated p27kip1. Using this antibody, we demonstrate that: (i) endogenous p27kip1 is phosphorylated at T198 in 4 breast cancer cells lines (MCF7, MDA-MB231, MDA-MB436 and MDA-MB468); (ii) T198 phosphorylation is increased in breast cancer cells compared with normal mammary epithelial cells (HMEC); (iii) T198-phosphorylated p27kip1 is exclusively cytoplasmic; (iv) T198 phosphorylation is dependent on the activity of the PI3K-PKB/Akt pathway, being it drastically reduced by the pharmacological PI3K inhibitor LY294002 or stimulated by the constitutive activation of PKB/Akt. Finally, in primary human breast carcinomas, cytoplasmic accumulation of T198-phosphorylated p27kip1 parallels Akt activation. We conclude that in breast cancer cells p27kip1 is phosphorylated at T198 in a PI3K/Akt dependent manner and that this phosphorylation may contribute to p27kip1 cytoplasmic mislocalization observed in breast cancer.  相似文献   

13.
14.
Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27(kip1) expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4(low)/CD8(low) T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection.  相似文献   

15.
目的:研究p27kip1蛋白和增殖细胞核抗原(proliferating cell nuclear antigen, PCNA)在星形细胞瘤中的表达与肿瘤病理分级的关系,探讨p27kip1蛋白在星形细胞瘤演变过程中的意义。方法:SP免疫组化法对64例星形细胞瘤的p27kip1蛋白和PCNA表达进行观察。结臬:随着病理级别的升高,p27kip1阳性细胞百分率降低,而PCNA则相反,两者的表达成显著负相关。结论:p27kip1表达的缺失可能与星形细胞瘤的发生发展密切相关,PCNA能较客观地反映肿瘤的恶性程度。  相似文献   

16.
Cell cycle re-entry of quiescent T cells is dependent upon cyclin-dependent kinase 2. Inhibition of cyclin-dependent kinase 2 by p27(Kip1) is believed to be the principal constraint on S-phase entry in T cells. We report that deficiency for p27(Kip1) has a more pronounced effect on the expansion of murine naive CD8(+) T cells and that this disparity is due to a reduced requirement for CD28-mediated costimulation in CD8(+) but not CD4(+) T cells lacking p27(Kip1). These data highlight a previously unappreciated difference in the way CD28 signaling is coupled to the core cell cycle machinery in these two T cell subsets.  相似文献   

17.
18.
Polyclonal B cell activation is a well-described feature of systemic lupus erythematosus (SLE), but the immune mechanisms leading to this activation are unclear. To gain insight into these processes, we extensively characterized the activated peripheral blood B cell populations in SLE. PBMC from lupus patients and healthy controls were stained with various combinations of conjugated Ab to identify distinct peripheral B cell subsets, and activation was assessed by measurement of forward scatter and CD80 or CD86 expression using flow cytometry. SLE patients had altered proportions of several B cell subsets, many of which demonstrated increased activation as assessed by forward scatter. This activation occurred at an early developmental stage, as B cells in the transitional (T2) stage were already significantly larger than those seen in controls. Increased proportions of CD80- or CD86-expressing cells were also seen in multiple B cell subsets, with the most striking differences observed in the naive CD27-CD23+ population. Within the CD23+ subset, increased costimulatory molecule expression was most pronounced in an IgD+IgMlow population, suggesting that activation follows Ag engagement. Although controls also had IgD+IgMlowCD23+ cells, they were reduced in number and not activated. Thus, there is an altered response to Ig receptor engagement with self-Ags in lupus.  相似文献   

19.
Zhao J  Zhang S  Wu X  Huan W  Liu Z  Wei H  Shen A  Teng H 《Neurochemical research》2011,36(3):549-558
KPC1 (Kip1 ubiquitylation-promoting complex 1) is the catalytic subunit of the ubiquitin ligase KPC, which regulates the degradation of the cyclin-dependent kinase inhibitor p27kip1 at the G1 phase of the cell cycle. To elucidate the expression and role of KPC1 in nervous system lesion and repair, we performed an acute spinal cord contusion injury (SCI) model in adult rats. Western blot analysis showed a significant up-regulation of KPC1 and a concomitant down-regulation of p27kip1 following spinal injury. Immunohistochemistry and immunofluorescence revealed wide expression of KPC1 in the spinal cord, including expression in neurons and astrocytes. After injury, KPC1 expression was increased predominantly in astrocytes, which highly expressed PCNA, a marker for proliferating cells. Co-immunoprecipitation demonstrated increased interactions between p27kip1 and KPC1 4 days after injury. To understand whether KPC1 plays a role in astrocyte proliferation, we applied LPS to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that p27kip1 expression was negatively correlated with KPC1 expression following LPS stimulation. Immunofluorescence analysis showed subcellular localizations of p27kip1 and KPC1 were also changed following the stimulation of astrocytes with LPS. These results suggest that KPC1 is related to the down-regulation of p27kip1; this event may be involved in the proliferation of astrocytes after SCI.  相似文献   

20.
P27kip1, as a member of Cip/Kip family of cyclin-dependent kinase inhibitors, plays important roles in cell cycle regulation and neurogenesis in the developing central nervous system. Serine-10 is the major phosphorylation site of p27kip1, and post-translational regulation of p27kip1 by different phosphorylation events is critical for its function. To elucidate the expressions and possible functions of p27kip1 and its phosphorylation in central nervous system lesion and repair, we performed an acute spinal cord contusion injury model in adult rats. Our work studied the temporal-spatial expression patterns of p27kip1 and Serine-10 phosphorylated p27kip1 (p-p27s10). Western blot analysis showed p27kip1 level significantly decreased at day 3 after damage, while p-p27s10 was detected at a high-level at the same time reaching the uninjured level. Moreover, immunofluorescence double labeling suggested these changes were striking in microglia and astrocytes, which were largely proliferated. Immunohistochemical analysis revealed subcellular localization changes of p27kip1 and p-p27s10 staining between nucleus and cytoplasm after injury in about 20% of total positive cells including neurons and glial cells. We also investigated the increased interactions of p27kip1 and p-p27s10 with CRM1 3 days after injury by co-immunoprecipitation studies. Taken together, we hypothesized spinal cord injury stimulated mitogenic signals to induce a serine-threonine kinase KIS (kinase interacting stathmin) to phosphorylate p27kip1 on Serine-10, so that p27kip1 could bind to CRM1 and be exported from nuclei for degradation. Such an event facilitated cell cycle progression of glial cells, especially microglia and astrocytes which had a prevalent proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号