首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation between the structures and conformations of short peptides KE, EW, AEDG and other, their influence on the dynamic properties of water and dose/biologic effect dependencies in a wide range of concentrations were regarded. Their effects on the dynamic properties of water were studied by temperature dependencies (5-45 degrees C) of infrared spectra of the solutions in the near (5180 cm-1) and far (200 cm-1). In vitro biotesting included the determination of the proliferative activity of thymocytes, a bimodal curve with the second maximum were detected at super-low doses (10(-17)-10(-15) mol/l). Authors propose a hypothesis that for superlow concentrations the formation and distance transmission of a signal from ligand to a target cell without the formation of any ligand-receptor complex take place. An active role in this model belongs to water medium acting according to the solution mechanism.  相似文献   

2.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

3.
The 'Solute Carrier Family SLC10' consists of six annotated members in humans, comprising two bile acid carriers (SLC10A1 and SLC10A2), one steroid sulfate transporter (SLC10A6), and three orphan carriers (SLC10A3 to SLC10A5). In this study we report molecular characterization and expression analysis of a novel member of the SLC10 family, SLC10A7, previously known as C4orf13. SLC10A7 proteins consist of 340-343 amino acids in humans, mice, rats, and frogs and show an overall amino acid sequence identity of >85%. SLC10A7 genes comprise 12 coding exons and show broad tissue expression pattern. When expressed in Xenopus laevis oocytes and HEK293 cells, SLC10A7 was detected in the plasma membrane but revealed no transport activity for bile acids and steroid sulfates. By immunofluorescence analysis of dual hemagglutinin (HA)- and FLAG-labeled SLC10A7 proteins in HEK293 cells, we established a topology of 10 transmembrane domains with an intracellular cis orientation of the N-terminal and C-terminal ends. This topology pattern is clearly different from the seven-transmembrane domain topology of the other SLC10 members but similar to hitherto uncharacterized non-vertebrate SLC10A7-related proteins. In contrast to the established SLC10 members, which are restricted to the taxonomic branch of vertebrates, SLC10A7-related proteins exist also in yeasts, plants, and bacteria, making SLC10A7 taxonomically the most widespread member of this carrier family. Vertebrate and bacterial SLC10A7 proteins exhibit >20% sequence identity, which is higher than the sequence identity of SLC10A7 to any other member of the SLC10 carrier family.  相似文献   

4.
Six new carbocyclic nucleosides were prepared by mounting a purine (compounds 4-6), 8-azapurine (7 and 8) or uridine (9) base on the amino group of (1S,3R)-3-amino-2,2,3-trimethylcyclopentylmethanol (10). At subtoxic concentrations, compounds 5-9 showed at best marginal antiviral activity.  相似文献   

5.
Two new biological guanido compounds from sipunculid worms, phascocoline [N-(3-guanidinopropionyl)-2-hydroxy-n-heptylamine] and phascolosomine [N-(3-guanidinoisobutyryl)-2-methoxy-n-heptylamine], have been tested for their effect on cultured rat heart cells. Both compounds were found to stop the beating of the cells at concentrations greater than or equal 10(-3) M, the effect being observed after 30 minutes for phascolosomine and after 24 hours for phascoline. At 10(-4) M concentration, the same compounds did not stop the beats but slowed the rhythm after 24 hours of contact. Assays performed with the hydrolysis products of phascoline and phascolosomine, beta-guanidinopropionic acid and 2-hydroxyheptylamine for the former, and beta-guanidinoisobutyric acid and 2-methoxy-n-heptylamine for the latter, have shown that the biological activity is located in the aminoalcool or aminoether moiety of the molelcule. It has been found that the effect on cultured rat heart cells was reversible at concentrations less than or equal 10(-3) M.  相似文献   

6.
1. Trialkyltin, triphenyltin and diphenyleneiodonium compounds inhibited ADP-stimulated O(2) evolution by isolated pea chloroplasts in the presence of phosphate or arsenate. Tributyltin and triphenyltin were the most effective inhibitors, which suggests a highly hydrophobic site of action. Phenylmercuric acetate was a poor inhibitor of photophosphorylation, which suggests that thiol groups are not involved. 2. Triethyltin was a potent uncoupler of photophosphorylation by isolated chloroplasts in media containing Cl(-), but had little uncoupling activity when Cl(-) was replaced by NO(3) (-) or SO(4) (2-), which are inactive in the anion-hydroxide exchange. It is suggested that uncoupling by triethyltin is a result of the Cl(-)-OH(-) exchange together with a natural uniport of Cl(-). Tributyltin, triphenyltin and phenylmercuric acetate had low uncoupling activity, probably because in these compounds the uncoupling activity is partially masked by inhibitory effects. 3. At high concentrations the organotin compounds caused inhibition of electron transport uncoupled by carbonyl cyanide m-chlorophenylhydrazone or NH(4)Cl. At these high concentrations the organotin compounds may be producing a detergent-like disorganization of the membrane structure. In contrast, diphenyleneiodonium sulphate inhibited uncoupled electron transport at low concentrations; however, this inhibition is less than the inhibition of photophosphorylation, which suggests that the compound also inhibits the phosphorylation reactions as well as electron transport. 4. The effects of these compounds on basal electron transport were complex and depended on the pH of the reaction media. However, they can be explained on the basis of three actions: inhibition of the phosphorylation reactions, uncoupling and direct inhibition of electron transport. 5. The inhibition of cyclic photophosphorylation in the presence of phenazine methosulphate by diphenyleneiodonium sulphate shows that it inhibits in the region of photosystem 1.  相似文献   

7.
Amateur choral singing is a common pastime and worthy of study, possibly conferring benefits to health and social behaviour. Participants might be expected to possess musical ability and share some behavioural characteristics. Polymorphisms in genes concerned with serotonergic neurotransmission are associated with both behaviour and musical aptitude. Those investigated previously include the variable number tandem repeats RS1, RS3 and AVR in the AVPR1A (arginine vasopressin receptor 1a) gene and STin2 in the SLC6A4 (solute carrier family 6 [neurotransmitter transporter, serotonin], member 4) gene, as well as the SLC6A4 promoter region polymorphism, 5-HTTLPR. We conducted a genetic association study on 523 participants to establish whether alleles at these polymorphisms occur more commonly in choral singers than in those not regularly participating in organised musical activity (non-musicians). We also analysed tagging single nucleotide polymorphisms (SNPs) for AVPR1A and SLC6A4 to determine whether other variants in these genes were associated with singer/non-musician status. At the STin2 polymorphism, overall association with singer/non-musician status was evident at P = 0.006. The 9-repeat (P = 0.04) and 12-repeat (P = 0.04) alleles were more common in singers and the 10-repeat allele less so (P = 0.009). Odds ratios were 0.73 (95% CI 0.57-0.94) for the 10-repeat allele and 2.47 (95% CI 0.88-6.94) for the rarer 9-repeat allele. No overall association was detected at P<0.05 between any other polymorphism and singer/non-musician status. Our null findings with respect to RS3, RS1 and AVR, polymorphisms associated with musical ability by other authors, suggest that choir membership may depend partly on factors other than musical ability. In a related musical project involving one participating choir, a new 40-part unaccompanied choral work, "Allele", was composed and broadcast on national radio. In the piece, each singer's part incorporated their personal RS3 genotype.  相似文献   

8.
Lu  Hengxiao  Wang  Hao  Sun  Peidao  Wang  Jiang  Li  Shuhai  Xu  Tongzhen 《Cytotechnology》2021,73(3):483-496

We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.

  相似文献   

9.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17 alpha position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3-6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lengths were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vivo system. At low doses (1 and 3 micrograms), a 14-57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 micrograms doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-butyl,N-methyl-8-[3',17' beta-dihydroxy estra-1',3',5'(10')-trien-17' alpha-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 +/- 7% in the CD-1 mouse uterus assay at the 3 micrograms dose and 57 +/- 4% at 0.1 nM in human ZR-75-1 cancer cells in culture.  相似文献   

10.
Aberrant HCO(3)(-) transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl(-)-dependent HCO(3)(-) transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO(3)(-) current by CFTR cannot account for CFTR-activated HCO(3)(-) transport and that CFTR does not activate AE1-AE4. In contrast, CFTR markedly activates Cl(-) and OH(-)/HCO(3)(-) transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporters with isoform-specific stoichiometries. DRA activity occurred at a Cl(-)/HCO(3)(-) ratio > or =2. SLC26A6 activity is voltage regulated and occurred at HCO(3)(-)/Cl(-) > or =2. The physiological significance of these findings is demonstrated by interaction of CFTR and DRA in the mouse pancreas and an altered activation of DRA by the R117H and G551D mutants of CFTR. These findings provide a molecular mechanism for epithelial HCO(3)(-) transport (one SLC26 transporter-electrogenic transport; two SLC26 transporters with opposite stoichiometry in the same membrane domain-electroneutral transport), the CF-associated aberrant HCO(3)(-) transport, and reveal a new function of CFTR with clinical implications for CF and congenital chloride diarrhea.  相似文献   

11.
The Morita-Baylis-Hillman (MBH) type reaction of a variety of aromatic and heteroaromatic conjugated nitroalkenes with formaldehyde in the presence of stoichiometric amounts of imidazole and catalytic amounts (10 mol %) of anthranilic acid at room temperature provided the corresponding hydroxymethylated derivatives in moderate to good yield. The parent nitroalkenes and their MBH adducts were subsequently screened for their anticancer activity. Some of the MBH adducts were found to inhibit cervical cancer (HeLa) cell proliferation at low micromolar concentrations with half-maximal inhibitory concentrations in the range of 1-2 microM. The antiproliferative activity of 3-((E)-2-nitrovinyl)furan and three potent MBH adducts, namely, hydroxymethylated derivatives of 3-((E)-2-nitrovinyl)thiophene, 1-methoxy-4-((E)-2-nitrovinyl)benzene, and 1,2-dimethoxy-4-((E)-2-nitrovinyl)benzene was correlated well with their antimicrotubule activity. At their effective concentration range, the tested compounds perturbed the organization of mitotic spindle microtubules and chromosomes. In the presence of hydroxymethylated nitroalkenes, abnormal bipolar or multipolar mitotic spindles were apparent. Interphase microtubules were found to be significantly depolymerized at relatively higher concentrations of the tested compounds. These compounds inhibited tubulin assembly into microtubules in vitro by binding to tubulin at a site distinct from the vinblastine and colchicine binding sites. The compounds reduced the intrinsic tryptophan fluorescence of tubulin and the fluorescence of tubulin-1-anilinonaphthalene-8-sulfonic acid (ANS) complex indicating that they induced conformational changes in the tubulin. The results suggest that hydroxymethylated nitroalkenes exert their antiproliferative activity at least in part by depolymerizing cellular microtubules through tubulin binding and indicate that hydroxymethylated nitroalkenes are promising lead compounds for cancer therapy.  相似文献   

12.
Abstract

Six new carbocyclic nucleosides were prepared by mounting a purine (compounds 5–7), 8-azapurine (compounds 9 and 10) or pyrimidine (compound 13) base on the amino group of (1R,cis)-3-(aminornethyl)-1,2,2-trimethylcyclopentylmethanol (2). The antiviral activity of compounds 5–7, 10 and 13, and their cytostatic activity, were evaluated. At subtoxic concentrations, the compounds showed no or marginal antiviral activity. Compound 5 showed moderate inhibition on tumor cell proliferation.  相似文献   

13.
The antiparasitic activity of racemic albendazole-sulphoxide (Ricobendazole = racRBZ) and its (+) and (-) enantiomers was tested in an ex vivo murine model for Trichinella spiralis infection. Larvae were isolated from the muscle of infected mice and exposed to concentrations between 0.01 and 1 microg/ml of the racemic mixture or to each of its enantiomers. The activity of each compound was then assayed by measuring the ability of the treated larvae to infect naive mice (larval viability). At a concentration of 0.5 microg/ml, all 3 compounds were highly effective in reducing the viability of the larvae, achieving reductions of 91.26% (racRBZ), 96.7% (+), and 89.2% (-), when compared with untreated controls. At lower concentrations (0.1 microg/ml), only treatment with (+)RBZ rendered a significant reduction in larval viability in comparison with controls (84.3%; P < 0.01), whereas at 0.01 microg/ml, none of the compounds altered larval viability (P > 0.05).  相似文献   

14.
Studying the effects, on the isolated rat duodenum motricity, of ten compounds precursors or metabolites of catecholamines, the following results were obtained: The direct metabolites of epinephrine and norepinephrine (metanephrine, normetanephrine), are either ineffective at concentrations below 5 X 10(-6) M, or weakly inhibitory at higher concentrations. Such inhibitory effects are prevented by alpha- and beta-blockers. 3-methoxy, 4-hydroxyphenylglycol and vanylmandelic acid have no significant effect. The catecholamine precursor, dopamine, the related compounds DOPA, 3 methoxytyramine, and to a lesser extent, 3-O methyl DOPA and homovanillic acid, have excito-motor effects at concentrations ranging mainly from 10(-7) M to 10(-5) M. At higher concentrations, the same compounds frequently exhibit inhibitory effects. The excito-motor effects might be due to a serotoninergic mechanism, since they are suppressed by the serotoninergic blocking agents methysergide and cyproheptadine. Furthermore, in the case of DOPA, we were able to establish a relationship between the excito-motor effects and duodenal serotonin stores. As for the inhibitory effects, they may be prevented by using alpha and beta blocking agents. Dihydroxyphenylacetic acid has no effect on the isolated rat duodenum motricity. The fact that dopamine and related compounds may have excitomotor effects at some concentrations, correlated with some physiopathological observations in man and animal allows some considerations about the eventual role of dopamine on intestinal motricity.  相似文献   

15.
SLC3A2, a member of the solute carrier family, was identified by proteomics methods as a component of a transporter capable of exporting the diamine putrescine in the Chinese hamster ovary (CHO) cells selected for resistance to growth inhibition by high exogenous concentrations of putrescine. Putrescine transport was increased in inverted plasma membrane vesicles prepared from cells resistant to growth inhibition by putrescine compared with transport in inverted vesicles prepared from non-selected cells. Knockdown of SLC3A2 in human cells, using short hairpin RNA, caused an increase in putrescine uptake and a decrease in arginine uptake activity. SLC3A2 knockdown cells accumulated higher polyamine levels and grew faster than control cells. The growth of SLC3A2 knockdown cells was inhibited by high concentrations of putrescine. Knockdown of SLC3A2 reduced export of polyamines from cells. Expression of SLC3A2 was suppressed in human HCT116 colon cancer cells, which have an activated K-RAS, compared with their isogenic clone, Hkh2 cells, which lack an activated K-RAS allele. Spermidine/spermine N(1)-acetyltransferase (SAT1) was co-immunoprecipitated by an anti-SLC3A2 antibody as was SLC3A2 with an anti-SAT1 antibody. SLC3A2 and SAT1 colocalized on the plasma membrane. These data provide the first molecular characterization of a polyamine exporter in animal cells and indicate that the diamine putrescine is exported by an arginine transporter containing SLC3A2, whose expression is negatively regulated by K-RAS. The interaction between SLC3A2 and SAT1 suggests that these proteins may facilitate excretion of acetylated polyamines.  相似文献   

16.
17.
SLC26A3 is a Cl(-)/HCO(3)(-) exchanger that plays a major role in Cl(-) absorption from the intestine. Its mutation causes congenital chloride-losing diarrhea. It has been shown that SLC26A3 are glycosylated, with the attached carbohydrate being extracellular and perhaps modulating function. However, the role of glycosylation has yet to be clearly determined. We used the approaches of biochemical modification and site-directed mutagenesis to prevent glycosylation. Deglycosylation experiments with glycosidases indicated that the mature glycosylated form of SLC26A3 exists at the plasma membrane, and a putative large second extracellular loop contains all of the N-linked carbohydrates. Deglycosylation of SLC26A3 causes depression of transport activity compared with wild-type, although robust intracellular pH changes were still observed, suggesting that N-glycosylation is not absolutely necessary for transport activity. To localize glycosylation sites, we mutated the five consensus sites by replacing asparagine (N) with glutamine. Immnoblotting suggests that SLC26A3 is glycosylated at N153, N161, and N165. Deglycosylation of SLC26A3 causes a defect in cell surface processing with decreased cell surface expression. We also assessed whether SLC26A3 is protected from tryptic digestion. While the mature glycosylated SLC26A3 showed little breakdown after treatment with trypsin, deglycosylated SLC26A3 exhibited increased susceptibility to trypsin, suggesting that the oligosaccharides protect SLC26A3 from tryptic digestion. In conclusion, our data indicate that N-glycosylation of SLC26A3 is important for cell surface expression and for protection from proteolytic degradation that may contribute to the understanding of pathogenesis of congenital disorders of glycosylation.  相似文献   

18.
19.
The highest activity of cyclic nucleotide-dependent (cAMP--2 X 10(-5) M, GMP--2 X 10(-4) M) phosphorylation of synaptic membrane proteins in vitro is revealed at equimolar concentrations of ATP and Mg2+ (10(-3)M) and depends on the ratio of the ATP concentration, protein amount in the assay and the period of exposure. At concentrations exceeding 10(-3) M ATP inhibits cyclic nucleotide-dependent phosphorylation. Optimal concentrations of ATR and Mg2+ to provide basal phosphorylation are found to be equal to 10(-2) M. Possible role of cyclic nucleotide-dependent phosphorylation in synaptic transmission is discussed.  相似文献   

20.
The antiprotozoan agent metronidazole (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole) and two of its major human urinary excretion products, 2-methyl-5-nitromidazole-1-yl acetic acid and 1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole were tested for genotoxic activity in human lymphocytes in vitro by analysis of chromosome aberrations, sister-chromatid exchanges and DNA-repair synthesis. The positive control compounds methyl methanesulphonate (MMS) and nitrogen mustard (HN2) showed significant genotoxic activity in these tests. No such activity of metronidazole and its two metabolites was detected in concentrations up to 1000 microgram/ml (5.8 X 10(-3) M). Nor did these 3 compounds influence DNA-repair synthesis induced by MMS and HN2. These results suggest that metronidazole, 2-methyl-5-nitroimidazole-1-yl acetic acid and 1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole have no direct genotoxic effect on human lymphocytes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号