首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA editing   总被引:3,自引:0,他引:3  
The term RNA editing describes those molecular processes in which the information content is altered in an RNA molecule. To date such changes have been observed in tRNA. rRNA and mRNA molecules of eukaryotes, but not prokaryotes. The demonstration of RNA editing in prokaryotes may only be a matter of time, considering the range of species in which the various RNA editing processes have been found. RNA editing occurs in the nucleus, as well as in mitochondria and plastids, which are thought to have evolved from prokaryotic-like endosymbionts. Most of the RNA editing processes, however, appear to be evolutionarily recent acquisitions that arose independently. The diversity of RNA editing mechanisms includes nucleoside modifications such as C to U and A to I deaminations, as well as non-templated nucleotide additions and insertions. RNA editing in mRNAs effectively alters the amino acid sequence of the encoded protein so that it differs from that predicted by the genomic DNA sequence.  相似文献   

2.
Gray MW 《Biochemistry》2012,51(26):5235-5242
The term "RNA editing" encompasses a wide variety of mechanistically and phylogenetically unrelated processes that change the nucleotide sequence of an RNA species relative to that of the encoding DNA. Two general classes of editing, substitution and insertion/deletion, have been described, with all major types of cellular RNA (messenger, ribosomal, and transfer) undergoing editing in different organisms. In cases where RNA editing is required for function (e.g., to generate a translatable open reading frame in a mRNA), editing is an obligatory step in the pathway of genetic information expression. How, when, and why individual RNA editing systems originated are intriguing biochemical and evolutionary questions. Here I review briefly what is known about the biochemistry, genetics, and phylogenetics of several very different RNA editing systems, emphasizing what we can deduce about their origin and evolution from the molecular machinery involved. An evolutionary model, centered on the concept of "constructive neutral evolution", is able to account in a general way for the origin of RNA editing systems. The model posits that the biochemical elements of an RNA editing system must be in place before there is an actual need for editing, and that RNA editing systems are inherently mutagenic because they allow potentially deleterious or lethal mutations to persist at the genome level, whereas they would otherwise be purged by purifying selection.  相似文献   

3.
4.
5.
6.
7.
8.
RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria.  相似文献   

9.
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions.  相似文献   

10.
11.
RNA editing, a process that results in the production of RNA molecules having a nucleotide sequence different from that of the initial DNA template, has been demonstrated in several organisms using different biochemical pathways. Very recently RNA editing was described in plant mitochondria following the discovery that the sequence of certain wheat and Oenothera cDNAs is different from the nucleotide sequence of the corresponding genes. The main conversion observed was C to U, leading to amino acid changes in the deduced protein sequence when these modifications occurred in an open reading frame. In this communication we show the first attempt to isolate and sequence a protein encoded by a plant mitochondrial gene. Subunit 9 of the wheat mitochondrial ATP synthase complex was purified to apparent homogeneity and the sequence of the first 32 amino acid residues was determined. We have observed that at position 7 leucine was obtained by protein sequencing, instead of the serine predicted from the previously determined genomic sequence. Also we found phenylalanine at position 28 instead of a leucine residue. Both amino acid conversions, UCA (serine) to UUA (leucine) and CUC (leucine) to UUC (phenylalanine), imply a C to U change. Thus our results seem to confirm, at the protein level, the RNA editing process in plant mitochondria.  相似文献   

12.
13.
RNA编辑被认为是生命体一种新的基因加工与修饰现象,是指DNA转录成RNA后除RNA剪切外的其他加工过程,以核苷酸的删除、插入或替换等方式改变遗传信息,揭示生物进化过程中基因修饰和调控的另一个重要途径,是对中心法则的重要补充.而RNAi是一种由dsRNA介导的,在转录水平、转录后水平和翻译水平上阻断基因表达的基因调节途径.着重介绍 RNA编辑功能、RNA编辑与RNA干扰关系.  相似文献   

14.
RNA produced from a number of genes on the mitochondrial (mt) DNA of Physarum polycephalum have nucleotides inserted at specific sites in their sequence. These insertions are spaced at approximately 25 nucleotide intervals and create open reading frames in mRNA and functional structure in tRNAs and rRNAs. Although most of the insertions at a site are single cytidines; single uridines and certain dinucleotides containing adenosine and guanosine as well as cytidine and uridine are also occasionally inserted at certain sites. This mixed nucleotide insertional RNA editing is unique among currently characterized editing systems.  相似文献   

15.
Guide RNAs are encoded in maxicircle and minicircle DNA of trypanosome mitochondria. They play a pivotal role in RNA editing, a process during which the nucleotide sequence of mitochondrial RNAs is altered by U-insertion and deletion. Guide RNAs vary in length from 35 to 78 nucleotides, which correlates with the variation in length of the three functionally important regions of which they are composed: (i) a 4–14 nucleotide anchor sequence embedded in the 5 region, which is complementary to a target sequence on the pre-edited RNA downstream of an editing domain, (ii) a middle part containing the editing information, which ranges from guiding the insertion of just one U into one site to that of the insertion of 32 Us into 10 sites, and (iii) a 5–24 nucleotide 3 terminal oligo [U] extension. Moreover, a variable uridylation site creates gRNAs containing a varying segment of editing information for the same domain. Comparison of different guide RNAs demonstrates that, besides the U-tail, they have no obvious common primary and secondary sequence motifs, each particular sequence being unique. The occurrence in vivo and the synthesis in vitro of chimeric molecules, in which a guide RNA is covalently linked through its 3 U-tail to an editing site of a pre-edited RNA, suggests that RNA editing occurs by consecutive transesterification reactions and is evidence that the guide RNAs not only provide the genetic information, but also the Us themselves.Abbreviations gRNA guide RNA  相似文献   

16.
17.
18.
J E Feagin  J M Abraham  K Stuart 《Cell》1988,53(3):413-422
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号